Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Synthesis of Fluorescent DNA Intercalator Precursors through Efficient Multiple Heck Reactions

Nigel A. Lengkeek A , Ramiz A. Boulos A , Allan J. McKinley A , Thomas V. Riley C , Boris Martinac B and Scott G. Stewart A D
+ Author Affiliations
- Author Affiliations

A M313, Chemistry, School of Biomedical, Biomolecular and Chemical Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.

B Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia.

C M502, Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, WA 6009, Australia.

D Corresponding author. Email: sgs@cyllene.uwa.edu.au

Australian Journal of Chemistry 64(3) 316-323 https://doi.org/10.1071/CH10374
Submitted: 21 October 2010  Accepted: 10 January 2011   Published: 11 March 2011

Abstract

A highly efficient synthesis of p-carboethoxy-tristyryl and carboethoxy-terastyrenyl benzene derivatives through a multiple Heck cross coupling reaction is reported. This reaction provides an efficient route to DNA intercalator precursors containing a benzene core.


References

[1]  (a) A. Rescifina, M. A. Chiacchio, A. Corsaro, E. De Clercq, D. Iannazzo, A. Mastino, A. Piperno, G. Romeo, R. Romeo, V. Valveri, J. Med. Chem. 2006, 49, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlant73K&md5=7dd877c4bb32453c0f82bcb5f10b1114CAS | 16420056PubMed |
      (b) N. J. Wheate, C. R. Brodie, J. G. Collins, S. Kemp, J. R. Aldrich-Wright, Mini Rev. Med. Chem. 2007, 7, 627.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Pommier, Chem. Rev. 2009, 109, 2894.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. White, Curr. Pharm. Des. 2006, 12, 3645.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) W. Shi, R. S. Coleman, T. L. Lowary, Org. Biomol. Chem. 2009, 7, 3709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgsLvL&md5=ec11a7f9769369ef1286737a8edf8f8aCAS | 19707675PubMed |
      (b) A. K. Ray, U. Diederichsen, Eur. J. Org. Chem. 2009, 4801.

[3]  Puskas  I., Schmitt  M., US patent 4,537,985.

[4]  J. Gross, G. Harder, A. Siepen, J. Harren, F. Vögtle, H. Stephan, K. Gloe, B. Ahlers, K. Cammann, K. Rissanen, Chemistry 1996, 2, 1585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFequw%3D%3D&md5=e176f9dffcdafa31eb40190e0f781a8dCAS |

[5]  M. Uda, A. Momotake, T. Arai, Org. Biomol. Chem. 2003, 1, 1635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWqtL8%3D&md5=930a9080f5c61fd497fd13b0a7d1956cCAS | 12926346PubMed |

[6]  S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Makashima, S. Akiyama, G. Katzer, W. Fabian, J. Chem. Soc., Perkin Trans. 2 1991, 861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFymu78%3D&md5=9764b4c45163c61a287d8c501fe66015CAS |

[7]  Z. I. Niazimbetova, A. Menon, M. E. Galvin, D. Evans, J. Electroanal. Chem. 2002, 529, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xltlersro%3D&md5=e254ca17e1140170cb3d37df16d843aeCAS |

[8]  A. Sharma, N. Sharma, R. Kumar, A. Shard, A. K. Sinha, Chem. Commun. 2010, 46, 3283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFamsL8%3D&md5=90fddfe78cf4e923e62bdc519ad6c8b2CAS |

[9]  I. P. Beletskaya, A. V. Cherpakov, Chem. Rev. 2000, 100, 3009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVSitb8%3D&md5=f17b15a432530917d888ddacdd35cad1CAS | 11749313PubMed |

[10]  W. Tao, S. Nesbitt, R. F. Heck, J. Org. Chem. 1990, 55, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjsFertQ%3D%3D&md5=038141c071fff6c4bddac2bf03dba245CAS |

[11]  (a) D. A. Alonso, C. Nájera, C. M. Pacheco, Adv. Synth. Catal. 2002, 344, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVKitLo%3D&md5=f97d77779caddd603afc0c0d9917ee5eCAS |
      (b) S. D. Bull, S. G. Davies, A. D. Smith, J. Chem. Soc., Perkin Trans. 1 2001, 2931.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Berthiol, I. Kondolff, H. Doucet, M. Santelli, J. Organomet. Chem. 2004, 689, 2786.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) A. Lansky, O. Reiser, A. De Meijere, Synlett 1990, 405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1WgsA%3D%3D&md5=698b37e550cb616dcc12ac4f63492691CAS |
      (b) B. Stulgies, P. Prinz, J. Magull, K. Rauch, K. Meindl, S. Rühl, A. de Meijere, Chemistry 2005, 11, 308.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. N. G. Pillow, P. L. Burn, I. D. W. Samual, M. Halim, Synth. Met. 1999, 102, 1468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFKht7Y%3D&md5=95c47e987e1ab0de4378f7780a5a928fCAS |

[14]  A. J. Amoroso, J. P. Maher, J. A. McCleverty, M. D. Ward, J. Chem. Soc. Chem. Commun. 1994, 1273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVOlsrw%3D&md5=d63f448eab14c8ac8c7e17f06d7baa2dCAS |

[15]  In the reported transformation the individual Heck cross coupling reactions are assumed to either occur simultaneously or one after each other. This reaction cannot be classified as a domino reaction defined as ‘a transformation of two or more bond forming reactions under identical reaction conditions, in which the latter transformations take place at the functionalities obtained in the former bond forming reactions.’ L. F. Tietze, G. Brasche, K. M. Gericke, Domino Reactions in Organic Synthesis 2006 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim). The transformation in this case could be classified as a tandem reaction because the reaction sites are different from one another and it could be assumed that the products following the first Heck cross coupling reaction are more activated that the first. The reaction could also be classified as a multiple Heck reaction as in the previously reported cases. By Braese, Stefan; De Meijere, Armin, Handbook of Organopalladium Chemistry for Organic Synthesis 2002, 1, 1179–1208 (John Wiley & Sons, Inc).

[16]  T. Jeffery, Tetrahedron Lett. 1985, 26, 2667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCrtrw%3D&md5=dc0f831a36fa0b7f12749083cefe4bb0CAS |

[17]  (a) W. A. Herrmann, C. B. Broßmer, K. Öfele, C.-P. Reisinger, T. Priermeier, M. Beller, H. Fisher, Angew. Chem. Int. Ed. Engl. 1995, 34, 1844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotF2kurg%3D&md5=a6e9e666f096822a79be1c6d32c0899bCAS |
      (b) L. F. Tietze, S. G. Stewart, M. E. Polomska, A. Modi, A. Zeeck, Chemistry 2004, 10, 5233.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Castella, F. Calahorra, D. Sainz, D. Velasco, Org. Lett. 2001, 3, 541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVOhsQ%3D%3D&md5=233cb833161f09d756fe6d5d2609cf51CAS | 11178820PubMed |

[19]  E. Díez-Barra, J. C. García-Martínez, S. Merino, R. del Rey, J. Rodríguez-López, P. Sánchez-Verdú, J. Tejeda, J. Org. Chem. 2001, 66, 5664.
         | Crossref | GoogleScholarGoogle Scholar | 11511237PubMed |

[20]  J. Nierle, D. Kuck, Synlett 2006, 18, 2914.

[21]  A. Peruga, J. A. Matta, D. Sainz, E. Peris, J. Organomet. Chem. 2001, 637–639, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) A. F. Littke, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 6989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslCjtr0%3D&md5=db492940b888f7b16de350b3ea1d8d9eCAS | 11459477PubMed |
      (b) M. R. Netherton, G. C. Fu, Org. Lett. 2001, 3, 4295.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. G. Stewart, D. Spagnolo, M. E. Polomska, M. Sin, M. Karimi, L. J. Abraham, Bioorg. Med. Chem. Lett. 2007, 17, 5819.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  T. W. Campbell, R. N. McDonald, J. Org. Chem. 1959, 24, 1246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXht1yms7g%3D&md5=43902ff36e34f6127673106b78d6156dCAS |

[24]  A. Mylona, J. Nikokavouras, I. M. Takakis, J. Org. Chem. 1988, 53, 3838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkslemsbc%3D&md5=09fad16ed971590cb99e1a663c1a4132CAS |

[25]  T. Schrievers, U. H. Brinker, Synthesis 1988, 330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFSlsrs%3D&md5=0ccff0140e91eec60284b6572a44eb4fCAS |

[26]  (a) R. N. Beale, E. M. F. Roe, J. Chem. Soc. 1952, 2755.
      (b) J. C. Roberts, J. A. Pincock, J. Org. Chem. 2006, 71, 1480.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. V. Il’ichev, W. Kühnle, K. A. Zachariasse, Chem. Phys. 1996, 211, 441.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  R. Benshafrut, M. Rabinovitz, Z. Dee-Noor-Barzily, A. J. de Meijere, Phys. Org. Chem 1999, 12, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFSnur0%3D&md5=7129c7d8d64f592aa4af178bc500b1a0CAS |

[28]  (a) H. Meier, R. Zertani, K. Noller, D. Oelkrug, G. Krabichler, Chem. Ber. 1986, 119, 1716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Cntbo%3D&md5=c98e45c1c5de7cbc33c7ba648e3faae8CAS |
      (b) A. E. Siegrist, P. Liechti, H. R. Meyer, K. Weber, Helv. Chim. Acta 1969, 52, 2521.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. L. Segura, R. Gmez, N. Martn, D. M. Guldi, Org. Lett. 2001, 3, 2645.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) D. H. Waldeck, Chem. Rev. 1991, 91, 415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVKitbk%3D&md5=b4cbb35f8d0144cfe916e161c3f57c2dCAS |
      (b) E. Gilabert, R. Lapouyade, C. Rullière, Chem. Phys. Lett. 1988, 145, 262.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. A. Kubicki, Chem. Phys. Lett. 2003, 373, 471.
         | 1:CAS:528:DC%2BD3sXktFGnurc%3D&md5=7439c2ab4328df7300708bedd2d909b8CAS |

[31]  M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFyktLk%3D&md5=0485f26b8d77b103e240660532fb7302CAS |

[32]  J. Gross, G. Harder, A. Siepen, J. Harren, F. Vögtle, H. Stephan, K. Gloe, B. Ahlers, K. Cammann, K. Rissanen, Chemistry 1996, 2, 1585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFequw%3D%3D&md5=e176f9dffcdafa31eb40190e0f781a8dCAS |

[33]  T. Ukai, H. Kawazazura, Y. Ishui, J. J. Bonnet, J. A. Ibers, J. Organomet. Chem. 1974, 65, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtVyltL8%3D&md5=ca2894e0bcfde95eb88a5b854054073aCAS |

[34]  D. R. Coulson, Inorg. Synth. 1972, 13, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  K. B. Sharpless, R. Oi, Org. Synth. 1996, 73, 1.

[36]  (a) R. Broos, D. Tavernier, M. J. Antunis, Chem. Ed. 1978, 55, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXos1Shuw%3D%3D&md5=fa708b77563eab4a138495d3daaed8fdCAS |
      (b) D. L. Tullen, B. A. J. Hess, J. Chem. Ed. 1971, 48, 476.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. H. Ackerman, A. R. Surrey, Org. Synth. 1967, 47, 76.