Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Facile Synthesis of 4,5-Dihydro-1,3,4-Thiadiazoles by 1,3-Dipolar Cycloaddition of Thioisomünchnones

Bárbara Sánchez A , José Luis Bravo A , María José Arévalo A , Ignacio López B , Mark E. Light C and Guadalupe Silvero B D
+ Author Affiliations
- Author Affiliations

A Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Badajoz E-06071, Spain.

B Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Cáceres E-10071, Spain.

C School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

D Corresponding author. Email: gsilvero@unex.es

Australian Journal of Chemistry 62(4) 356-359 https://doi.org/10.1071/CH08412
Submitted: 30 September 2008  Accepted: 2 February 2009   Published: 24 April 2009

Abstract

The present paper summarizes a straightforward synthesis of 4,5-dihydro-1,3,4-thiadiazoles by the 1,3-dipolar cycloaddition of thioisomünchnones. These reactions have been carried out in dichloromethane and are essentially complete within 60 min at room temperature. Under such mild conditions the asymmetric version has been explored as well. Unequivocal structure elucidation has been accomplished by means of one- and two-dimensional NMR techniques as well as X-ray structure analysis.


Acknowledgements

B.S. thanks the Spanish Ministerio de Educación y Ciencia for a Ph.D. scholarship. Financial support from the same Ministry (Grants CTQ2005–07676 and CTQ2007–66641) is gratefully acknowledged. We are thankful to Professors J. L. Jiménez and P. Cintas (Universidad de Extremadura) for valuable comments on this work.


References


[1]   Kornis G., in Comprehensive Heterocyclic Chemistry (Eds A. R. Katritzky, C. W. Rees) 1984, Vol. 6, Part 4B, pp. 575–577 (Pergamon Press: Oxford).

[2]   N. S. A. M. Khalil, Eur. J. Med. Chem. 2007, 42,  1193.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   Typical Procedure (3): To a solution of 1 (1.0 mmol) in CH2Cl2 (3 mL) was added the corresponding azodicarboxylate (2, 1.0 mmol) and the reaction mixture was stirred at room temperature for 60 min. After removal of the solvent under vacuum, the product crystallized from diethyl ether in moderate to good yields (40–65%, not optimized). Spectrocopic data: (3a) Mp 179°C (dec.). 1H-NMR (400 MHz, CDCl3) δ 8.35–7.26 (14H, m, ar), 4.45 (2H, s, CH2), 3.65 (3H, s, COOCH3), 3.37 (3H, s, COOCH3), 2.96 (3H, s, NCH3); 13C-NMR (100 MHz, CDCl3) δ 168.08 (C=O(C-5)), 153.70 (C=O(OCH3)), 152.43 (C=O(OCH3)), 151.00 (C-2), 147.45, 143.51, 136.69, 136.41, 129.35, 128.92, 128.77, 128.56, 127.98, 127.86, 127.74, 127.68, 127.53, 125.89, 125.04, 124.68, 119.70 (ar), 88.83 (C-5), 56.95 (CH2), 54.44 (CH3OOC), 53.34 (CH3OOC), 37.15 (NCH3). IR νmax/cm–1 1743, 1688, 1528, 1353, 1254. HRMS (CI) C27H25N5O7S requires [M+Na]+ 586.1372; Found 586.1405. (3b) 1H-NMR (400 MHz, CDCl3) δ 8.37–7.12 (14H, m, ar), 4.47 (2H, s, CH2), 2.91 (3H, s, NCH3), 1.52 (9H, s, C(CH3)3), 1.28 (9H, s, C(CH3)3). (3c) Mp 154°C. Elemental analysis found: C 58.88, H 4.92, N 11.83, S 5.24. C29H29N5O7S requires C 58.88, H 4.94, N 11.84, S 5.41%. 1H-NMR (400 MHz, CDCl3) δ 8.34–7.26 (14H, m, ar), 4.44 (2H, s, CH2), 4.04 (2H, bm, CH2), 3.89 (1H, m, JH,H′ 11.2, JCH2,CH3 7.1, CH2), 3.78 (1H, m, JH,H′ 11.1, JCH2,CH3 7.2, CH2), 2.96 (3H, s, NCH3), 1.17 (3H, bs, CH3), 0.91 (3H, t, J 7.0, CH3); 13C-NMR (100 MHz, CDCl3) δ 168.21 (C=O(C-5)), 153.22 (C=O(OCH2CH3)), 151.97 (C=O(OCH2CH3)), 150.77 (C-2), 147.32, 143.71, 137.02, 136.50, 129.30, 128.72, 127.81, 127.65, 127.59, 124.59 (ar), 88.74 (C-5), 64.22 (OCH2), 62.16 (OCH2), 56.86 (NCH2), 37.12 (NCH3), 14.33 (CH3), 13.64 (CH3). IR νmax/cm–1 1740, 1720, 1690, 1620, 1520, 1250, 740, 730, 700.

[21]   The authors have deposited the atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, upon request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK. Crystal data for 3c (CCDC-146112), C29H29N5O7S, Mr = 590.63, monoclinic, P21/c, a = 12.127(6), b = 19.843(10), c = 12.262(3) Å, V = 2931(2) Å3, Z = 4, Dcalcd = 1.341 g cm–3, λ(MoKα) = 0.71073 Å, μ = 0.165 mm–1, F(000) = 1240, T = 150(2) K, GooF2 = 0.985, independent reflections = 5179 [Rint = 0.0471] of a total of 9415 collected reflections, R(F) obeying F2 > 2σ(F2) = 0.0445, wR(F2) = 0.0931, R(all data) = 0.0822, wR(F2) = 0.1074.

[22]   To a solution of (2S,3R,4S,5S)-N-(2,3,4,5,6-pentaacetoxy)hexyl-N-methyl-N′-(4-nitrophenyl)thiourea (1.0 g, 1.7 mmol) in dry chloroform (20 mL) was added α-clorophenylacetyl chloride (0.8 mL, 5.0 mmol) and was refluxed for 1 h. After, the reaction mixture was concentrated under vacuum and washed with dry diethyl ether. Chloroform (40 mL) and triethylamine (0.5 mL, 3.6 mmol) were then added to the residue obtained and the mixture was refluxed for 10 min. The crude product was then washed with distilled water, dried over magnesium sulfate, and concentrated under reduced pressure to afford a viscous oil. This product was dissolved in dry chloroform (10 mL), treated with diethylazodicarboxylate (0.3 mL, 2.0 mmol), and left to react at room temperature for 1 h. Subsequent purification by column chromatography (ethyl acetate/petroleum ether, 2:3) afforded a nearly 1:1 diastereomeric mixture of 8a and 8b (38% yield). 1H-NMR (400 MHz, CDCl3) δ 8.33–7.30 (9H, m, ar), 5.44–5.34 (6H, m, H-2′, H-3′, H-4′), 5.03 (2H, m, H-5′), 4.32–3.78 (12H, m, H-6′, H-6″, CH2), 3.52 (4H, m, H-1′, H-1″), 3.00 (3H, CH3), 2.13 (3H, CH3), 2.12 (3H, CH3), 2.11 (3H, CH3), 2.08 (3H, CH3), 2.06 (3H, CH3), 2.04 (3H, CH3), 2.03 (3H, CH3), 2.01 (3H, CH3), 1.26–083 (12H, CH3). 13C-NMR (100 MHz, CDCl3) δ 170.48, 170.18, 170.11, 169.81, 169.76, 168.06 (C=O(C-5)), 167.90 (C=O(C-5)), 153.20, 152.94, 150.47 (C-2), 150.37 (C-2), 143.69, 137.10, 129.39, 129.28, 128.36, 127.82, 127.71, 127.56, 124.57 (ar), 88.81 (C-5), 88.70 (C-5), 69.11 (2C, C-4′), 68.97 (2C, C-5′), 68.74 (2C, C-3′), 68.25 (2C, C-2′), 64.17 (2C, C-6′), 62.00 (C-1′), 61.40 (C-1′), 52.47 (CH2), 52.18 (CH2), 38.31 (NCH3), 38.18 (NCH3), 20.71, 20.63, 20.47 (10C, CH3(OAc)), 14.30 (CH3), 13.64 (CH3). IR νmax/cm–1 1750, 1720, 1700, 1610, 1390, 1350, 1220, 1150, 1025, 950, 810, 690, 620.