Halogenation of Carbonyl Compounds by an Ionic Liquid, [AcMIm]X, and Ceric Ammonium Nitrate (CAN)
Brindaban C. Ranu A B , Laksmikanta Adak A and Subhash Banerjee AA Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
B Corresponding author. Email: ocbcr@iacs.res.in
Australian Journal of Chemistry 60(5) 358-362 https://doi.org/10.1071/CH07061
Submitted: 5 March 2007 Accepted: 22 March 2007 Published: 28 May 2007
Abstract
An ionic liquid, acetylmethylimidazolium halide ([AcMIm]X), in combination with ceric ammonium nitrate promotes halogenations of a wide variety of ketones and 1,3-keto esters at the α-position. The ionic liquid acts here as reagent as well as reaction medium, and thus the reaction does not require any organic solvent or conventional halogenating agent. The reaction is completely arrested when the radical quencher TEMPO is used. A plausible radical mechanism is also suggested.
Acknowledgments
This investigation has enjoyed financial support from CSIR, New Delhi [grant no. 01(1936)/04]. L.A. and S.B. also thank CSIR for their fellowships.
[1]
(b) C.-K. Sha,
C.-T. Tseng,
W.-S. Chang,
Tetrahedron Lett. 2001, 42, 683.
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
, and references therein.
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
, and references therein.
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |