Supplementary Material

Six-step total syntheses of (–)-galanthamine and (–)-*N*-norgalanthamine

Nan Hu^{A,B}, Yu-Tao He^{A,B}, Ping Lan^{A,B}, Martin G. Banwell^{A,B,C,*} and Lorenzo V. White^{A,B,*}

^AInstitute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong, 510632, China

^BCollege of Pharmacy, Jinan University, Guangzhou, 510632, China

^cGuangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023 China

*Correspondence to: Email: <u>mgbanwell@jnu.edu.cn</u>, <u>Lorenzo.white1312@gmail.com</u>

Supplementary Material

for

Six-Step Total Syntheses of (-)-Galanthamine and (-)-N-Norgalanthamine

Nan Hu,^{A,B} Yu-Tao He,^{A,B} Ping Lan,^{A,B} Martin G. Banwell^{A,B,C}* and Lorenzo V. White ^{A,B}*

^A Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China

and

^B College of Pharmacy, Jinan University, Guangzhou, 510632, China

and

^C Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023 China

Contents

(i)	Plots Derived from Single-Crystal X-ray Analyses of Compounds 2•HCl and 11S2
(ii)	Tabulated Comparisons of the ${}^{13}C{}^{1}H$ NMR Spectral Data for Authentic and
	Synthetic Samples of Galanthamine and <i>N</i> -NorgalanthamineS4
(iii)	References
(iv)	¹ H and ¹³ C{ ¹ H} NMR Spectra for Compounds 1, 1•D/HCl, authentic 1, synthetically-
	derived 2 and 2 derived from authentic 1, 6-11

Figure S1: Plot derived from the single-crystal X-ray analysis of compound **2** (CCDC 2175431) showing two molecules of the hydrochloride salt and four molecules of water (crystal grown from fractions obtained after flash chromatographic purification on silica gel using 20:1 v/v dichloromethane/methanol as the eluting solvent).

Figure S2: Plot derived from the single-crystal X-ray analysis of compound **11** (CCDC 2175430) (crystal grown using the vapour diffusion technique conducted at ambient temperatures and a dichloromethane/hexane solvent system).

Galanthamine ^{a,b}	Authentic Sample ^{b,c}	Compound 1 ^{b,d}	AS e
δ_{C}	δ_{C}	δ_{C}	$\Delta 0_{\rm C}$
146.0	145.8	145.8	0
144.3	144.1	144.2	+0.1
133.2	133.0	132.9	-0.1
129.2	129.1	128.4	-0.7
127.8	127.6	127.7	+0.1
126.9	126.8	126.6	-0.2
122.3	122.1	122.3	+0.2
114.4	111.2	111.2	0
88.9	88.7	88.7	0
62.2	62.0	62.0	0
60.7	60.6	60.3	-0.3
56.1	55.9	55.9	0
54.0	53.8	53.6	-0.2
48.4	48.2	48.1	-0.1
42.2	42.0	41.6	-0.4
33.9	33.7	33.5	-0.2
30.1	29.9	29.9	0

 Table 1: ¹³C NMR Spectral Comparisons for Galanthamine (1)

^adata reported in ref. 1 for (\pm) -1; ^brecorded in CDCl₃; ^ccommercially-derived (–)-galanthamine; ^dsample prepared using the route shown in Schemes 1 and 2; ^edifference between chemical shift observed for the authentic and synthetic samples.

Norgalanthamine ^{a,b}	Authentic Sample ^{b,c}	Compound 2 ^{b,d}	۸8- ^e
δ_{C}	δ_{C}	$\delta_{\rm C}$	Δυς
146.2	146.2	146.3	+0.1
143.9	144.1	144.1	0
133.1	133.2	133.2	0
133.0	133.0	133.0	0
127.6	127.7	127.7	0
127.0	127.1	127.0	-0.1
120.5	120.7	120.8	+0.1
111.0	111.1	111.1	0
88.5	88.6	88.6	0
61.9	62.0	62.0	0
55.8	55.9	56.0	+0.1
53.8	53.9	53.9	0
48.7	48.7	48.7	0
47.0	47.1	47.1	0
40.3	40.2	40.2	0
29.9	29.9	29.9	0

 Table 2: ¹³C NMR Spectral Comparisons for N-Norgalanthamine (2)

^adata reported in ref. 2 for (–)-**2**; ^brecorded in CDCl₃; ^csample prepared by Dr Yu-Tao He by *N*-demethylation of commercially-derived (–)-galanthamine; ^dsample prepared by Mr Nan Hu using the route shown in Schemes 1 and 3; ^edifferences in chemical shift observed for the authentic and synthetic samples.

References

- 1. Nugent, J.; Banwell, M. G. An Eleven-step Synthesis of Galanthamine from Commercially Available Materials. *Eur. J. Org. Chem.* **2016**, 5862-5867.
- 2. Jordis, U.; Treu, M.; Hirnscahll, M.; Frohlich, J.; Crollner, L.; Kalz, B.; Kalz, T.; Kuhnhackl, P. Methods for Producing Norgalanthamine, As Well As Isomers, Salts and Hydrates Thereof. US 2006/0069251 A1 patent, Mar. 30, **2006**.

CHCI3			
6.03 6.658 6.658 6.658 6.657 6.607 6.007 6.001 6.003 6.0000000000	4.14 4.12 4.12 4.12 4.10 4.12 4.10 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71	2.04 2.03 2.02 2.02 2.01 1.97

300 MHz ¹H NMR Spectrum of Compound 1 (recorded in CDCl₃)

S8

$\begin{array}{c} 7.7\\ 6.64\\ 6.62\\ 6.62\\ 6.62\\ 6.64\\ 6.62\\ 6.64\\ 6.62\\ 6.64\\ 6.62\\ 6.64\\ 6.64\\ 6.64\\ 6.64\\ 6.64\\ 6.65\\ $	$1.72 \\ 1.72$

-5.78 	2.05 2.05 2.05	1.16	.68		03 55 87 78 17 17	.73
4 4	$\begin{array}{c} 1 \\ 2 \\ 1 \\ 1$	11	88	77 76	62 55 42 42	33 29
57	$\sum z < 1$			\leq		

126 MHz ¹³C{¹H} NMR Spectrum of Authentic (–)-Galanthamine

<u>E</u>	
5	
Ĥ	
5	
0	
0 7 9 7 0 7 0	2 0 0 1 0 1 2 4 0 2 0 0 0 0 0 9 9 0 1 0 8 0 4 0 0 0 0 6 9 0 1 4 8 0 2 9 V
<u>, , , , , , , , , , , , , , , , , , , </u>	
66667	

300 MHz ¹H NMR Spectrum of Syntheticallyderived Compound **2** (recorded in CDCl₃)

S14

500 MHz ¹H NMR Spectrum of Compound **2** Derived from Authentic (–)-Galanthamine (recorded in CDCl₃)

500 MHz ¹H NMR Spectrum of Compound 3 (recorded in CDCl₃) HO⁽⁻⁾ (-)

		CDCI3	
<u>8</u> .	.51	00	26 20 26 20
40	03	7.0	9.1 9.2 2.7
÷.	—		- 5 m m
			\checkmark /

126 MHz $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 3 (recorded in CDCl₃)

75 MHz ¹³C{¹H} NMR Spectrum of Compound **8** (recorded in CDCl₃)

	CHC13			
- 9.86	$\begin{pmatrix} 7.41 \\ 7.39 \\ 7.39 \\ 7.26 \\ 6.91 \\ 6.90 \end{pmatrix}$	$\int_{5.95}^{6.19} 6.17$ 5.96 5.95 5.94	4.95 4.94 4.94 4.21 4.19 4.19 4.19 4.19 4.19 4.19 4.19 4.1	2.43 2.43 2.41 2.40 2.33 2.33 2.19 2.19 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15

300 MHz ¹H NMR Spectrum of Compound 9 (recorded in CDCl₃)

