Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Palladium-mediated CO2 extrusion followed by insertion of ketenes: translating mechanistic studies to develop a one-pot method for the synthesis of ketones

Yang Yang https://orcid.org/0000-0001-8443-9712 A , Allan J. Canty https://orcid.org/0000-0003-4091-6040 B and Richard A. J. O’Hair https://orcid.org/0000-0002-8044-0502 A *
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Vic. 3010, Australia.

B School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tas. 7001, Australia.

* Correspondence to: rohair@unimelb.edu.au

Handling Editor: Amir Karton

Australian Journal of Chemistry 76(12) 825-836 https://doi.org/10.1071/CH23026
Submitted: 7 February 2023  Accepted: 3 April 2023  Published online: 31 May 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Multistage mass spectrometry (MSn) experiments were used to explore extrusion–insertion (ExIn) reactions of the palladium complex [(phen)Pd(O2CPh)]+ (phen, 1,10-phenanthroline). Under collision-induced dissociation (CID) conditions, the organopalladium cation [(phen)Pd(Ph)]+ was formed via decarboxylation and was found to react with phenylmethylketene to yield the enolate [(phen)Pd(CPhMeC(O)Ph)]+ via an insertion reaction. A further stage of CID revealed that the enolate fragments via loss of styrene to form the acyl complex [(phen)Pd(C(O)Ph)]+. Formation of both the coordinated enolate and acyl anions is supported by density functional theory (DFT) calculations. Attempts to develop a palladium-mediated one-pot synthesis of ketones from 2,6-dimethoxybenzoic acid as the key substrate and the ketene substrates R1R2C═C═O (R1 = Ph, R2 = Me; R1 = R2 = Ph) proved challenging owing to low yields and side product formation.

Keywords: collision-induced dissociation, decarboxylation, DFT calculations, extrusion–insertion reactions, insertion of ketene, multistage mass spectrometry, palladium-mediated reactions, reaction mechanisms.

References

Goossen LJ, editor. Inventing Reactions. Topics in Organometallic Chemistry, 44. Springer GmbH; 2013. p. 340.

Wei CS, Simmons EM, Hsaio Y, Eastgate MD. Development of Robust, Scaleable Catalytic Processes through Fundamental Understanding of Reaction Mechanisms. Top Catal 2017; 60(8): 620-630.
| Crossref | Google Scholar |

Dedieu A. Theoretical studies in palladium and platinum molecular chemistry. Chem Rev 2000; 100(2): 543-600.
| Crossref | Google Scholar |

Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F. Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights. Chem Rev 2015; 115(17): 9532-9586.
| Crossref | Google Scholar |

Sperger T, Sanhueza IA, Schoenebeck F. Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities. Acc Chem Res 2016; 49(6): 1311-1319.
| Crossref | Google Scholar |

Xiong Q, Chen HH, Zhang T, Shan CH, Bai RP, Lan Y. On the Mechanism of Palladium-Catalyzed Unsaturated Bond Transformations: A Review of Theoretical Studies. Asian J Org Chem 2019; 8: 1194-1206.
| Crossref | Google Scholar |

Xue L, Lin Z. Theoretical aspects of palladium-catalysed carbon-carbon cross-coupling reactions. Chem Soc Rev 2010; 39(5): 1692-1705.
| Crossref | Google Scholar |

Böhme DK, Schwarz H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew Chem Int Ed 2005; 44(16): 2336-2354.
| Crossref | Google Scholar |

O’Hair RAJ. The 3D quadrupole ion trap mass spectrometer as a complete chemical laboratory for fundamental gas-phase studies of metal mediated chemistry. Chem Commun 2006; 14: 1469-1481.
| Crossref | Google Scholar |

10  O’Hair RAJ. Mass spectrometry based studies of gas phase metal catalyzed reactions. Int J Mass Spectrom 2015; 377: 121-129.
| Crossref | Google Scholar |

11  O’Hair RAJ. Organometallic Gas-Phase Ion Chemistry and Catalysis: Insights into the Use of Metal Catalysts to Promote Selectivity in the Reactions of Carboxylic Acids and Their Derivatives. Mass Spectrom Rev 2021; 40(6): 782-810.
| Crossref | Google Scholar |

12  O’Hair RAJ, Rijs NJ. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. Acc Chem Res 2015; 48(2): 329-340.
| Crossref | Google Scholar |

13  O’Hair RAJ. Gas-phase studies of metal catalyzed decarboxylative cross-coupling reactions of esters. Pure Appl Chem 2015; 87(4): 391-404.
| Crossref | Google Scholar |

14  Schwarz H. Ménage à trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol 2017; 7(19): 4302-4314.
| Crossref | Google Scholar |

15  Ariafard A, Yates BF. Subtle balance of ligand steric effects in Stille transmetalation. J Am Chem Soc 2009; 131(39): 13981-13991.
| Crossref | Google Scholar |

16  O’Hair RAJ. Gas phase ligand fragmentation to unmask reactive metallic species. Wiley-VCH Verlag GmbH & Co. KGaA; 2010. pp. 199–227.

17  Li J, Khairallah GN, O’Hair RAJ. Dimethylcuprate-Mediated Transformation of Acetate to Dithioacetate. Organometallics 2015; 34(2): 488-493.
| Crossref | Google Scholar |

18  Noor A, Li J, Khairallah GN, Li Z, Ghari H, Canty AJ, Ariafard A, Donnelly PS, O’Hair RAJ. A one-pot route to thioamides discovered by gas-phase studies: palladium-mediated CO2 extrusion followed by insertion of isothiocyanates. Chem Commun 2017; 53(27): 3854-3857.
| Crossref | Google Scholar |

19  Yang Y, Canty AJ, McKay AI, Donnelly PS, O’Hair RAJ. Palladium-Mediated CO2 Extrusion Followed by Insertion of Isocyanates for the Synthesis of Benzamides: Translating Fundamental Mechanistic Studies To Develop a Catalytic Protocol. Organometallics 2020; 39: 453-467.
| Crossref | Google Scholar |

20  Yang Y, Canty AJ, O’Hair RAJ. Gas-phase studies of copper(i)-mediated CO2 extrusion followed by insertion of the heterocumulenes CS2 or phenylisocyanate. J Mass Spectrom 2020; 56(4): e4579.
| Crossref | Google Scholar |

21  Yang Y, Canty AJ, O’Hair RAJ. Why does the synthesis of N-phenylbenzamide from benzenesulfinate and phenylisocyanate via the palladium-mediated extrusion–insertion pathway not work? A mechanistic exploration. Aust J Chem 2023; 76(1): 49-57.
| Crossref | Google Scholar |

22  Yang Y, Noor A, Canty AJ, Ariafard A, Donnelly PS, O’Hair RAJ. Synthesis of Amidines by Palladium-Mediated CO2 Extrusion Followed by Insertion of Carbodiimides: Translating Mechanistic Studies to Develop a One-Pot Method. Organometallics 2019; 38: 424-435.
| Crossref | Google Scholar |

23  Yang Y, Spyrou B, Donnelly PS, Canty AJ, O’Hair RAJ. The role of silver carbonate as a catalyst in the synthesis of N-phenylbenzamide from benzoic acid and phenyl isocyanate: a mechanistic exploration. Aust J Chem 2022; 75(9): 495-505.
| Crossref | Google Scholar |

24  Yang Y, Spyrou B, White JM, Canty AJ, Donnelly PS, O’Hair RAJ. Palladium-Mediated CO2 Extrusion Followed by Insertion of Allenes: Translating Mechanistic Studies to Develop a One-Pot Method for the Synthesis of Alkenes. Organometallics 2022; 41(13): 1595-1608.
| Crossref | Google Scholar |

25  Dickstein JS, Curto JM, Gutierrez O, Mulrooney CA, Kozlowski MC. Mild aromatic palladium-catalyzed protodecarboxylation: kinetic assessment of the decarboxylative palladation and the protodepalladation steps. J Org Chem 2013; 78(10): 4744-4761.
| Crossref | Google Scholar |

26  Dickstein JS, Mulrooney CA, O’Brien EM, Morgan BJ, Kozlowski MC. Development of a catalytic aromatic decarboxylation reaction. Org Lett 2007; 9(13): 2441-2444.
| Crossref | Google Scholar |

27  O’Duill ML, Engle KM. Protodepalladation as a Strategic Elementary Step in Catalysis. Synthesis 2018; 50(24): 4699-4714.
| Crossref | Google Scholar |

28  Tsuji J, Mandai T. Palladium-Catalyzed Hydrogenolysis of Allylic and Propargylic Compounds with Various Hydrides. Synthesis 1996; 1996(01): 1-24.
| Crossref | Google Scholar |

29  Hey H, Arpe H-J. Removal of Allyl groups by Formic Acid Catalyzed by (Triphenylphosphane)palladium. Angew Chem Int Ed Engl 1973; 12(11): 928-929.
| Crossref | Google Scholar |

30  Oshima M, Sakamoto T, Maruyama Y, Ozawa F, Shimizu I, Yamamoto A. Synthesis and properties of (η3-1-methylallyl)palladium(ii) formates as models of intermediates in the palladium-catalyzed reductive cleavage of allylic carboxylates and carbonates with formic acid. Bull Chem Soc Jpn 2000; 73: 453-464.
| Crossref | Google Scholar |

31  Oshima M, Yamazaki H, Shimizu I, Nisar M, Tsuji J. Palladium-Catalyzed Selective Hydrogenolysis of Alkenyloxiranes with Formic-Acid. Stereoselectivity and Synthetic Utility. J Am Chem Soc 1989; 111: 6280-6287.
| Crossref | Google Scholar |

32  Hutchins RO, Learn K. Regio- and Stereoselective Reductive Replacement of Allylic Oxygen, Sulfur, and Selenium Functional Groups by Hydride Via Catalytic Activation by Palladium(0) Complexes. J Org Chem 1982; 47: 4380-4382.
| Crossref | Google Scholar |

33  Hutchins RO, Learn K, Fulton RP. Reductive Displacement of Allylic Acetates by Hydride Transfer Via Catalytic Activation by Palladium(0) Complexes. Tetrahedron Lett 1980; 21: 27-30.
| Crossref | Google Scholar |

34  Allen AD, Tidwell TT. Ketenes and Other Cumulenes as Reactive Intermediates. Chem Rev 2013; 113(9): 7287-7342.
| Crossref | Google Scholar |

35  Allen AD, Tidwell TT. Recent advances in ketene chemistry. ARKIVOC 2016; 2016(1Spec.Issue): 415-490.
| Crossref | Google Scholar |

36  Tidwell TT. Ketenes. Wiley; 1995. p. 665.

37  Zabicky J, editor. The Chemistry of Metal Enolates. Wiley; 2009.

38  Culkin DA, Hartwig JF. Palladium-catalyzed α-arylation of carbonyl compounds and nitriles. Acc Chem Res 2003; 36(4): 234-245.
| Crossref | Google Scholar |

39  Dieter RK. Reaction of acyl chlorides with organometallic reagents: A banquet table of metals for ketone synthesis. Tetrahedron 1999; 55(14): 4177-4236.
| Crossref | Google Scholar |

40  Mitsudo T, Kadokura M, Watanabe Y. Palladium-complex-catalyzed reactions of ketenes with allylic carbonates or acetates. Novel syntheses of α-allylated carboxylic esters and 1,3-dienes. J Org Chem 2002; 52(9): 1695-1699.
| Crossref | Google Scholar |

41  Mitsudo T, Kadokura M, Watanabe Y. Novel synthesis of α,β-unsaturated ketones by the palladium-catalyzed arylation of ketenes with aroyl chlorides or the decarbonylative cross-condensation of acyl halides. J Org Chem 2002; 52(15): 3186-3192.
| Crossref | Google Scholar |

42  Diao T, Pun D, Stahl SS. Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity. J Am Chem Soc 2013; 135(22): 8205-8212.
| Crossref | Google Scholar |

43  Ito Y, Hirao T, Saegusa T. Synthesis of α,β-unsaturated carbonyl compounds by palladium(ii)-catalyzed dehydrosilylation of silyl enol ethers. J Org Chem 1978; 43(5): 1011-1013.
| Crossref | Google Scholar |

44  Ito Y, Nakatsuka M, Kise N, Saegusa T. Preparation of Pd(ii) enolate complexes and their reactions. Tetrahedron Lett 1980; 21(30): 2873-2876.
| Crossref | Google Scholar |

45  Minami I, Takahashi K, Shimizu I, Kimura T, Tsuji J. New synthetic methods for α,β -unsaturated ketones, aldehydes, esters and lactones by the palladium-catalyzed reactions of silyl enol ethers, ketene silyl acetals, and enol acetates with allyl carbonates. Tetrahedron 1986; 42(11): 2971-2977.
| Crossref | Google Scholar |

46  Muzart J. One-Pot Syntheses of α,β-Unsaturated Carbonyl Compounds through Palladium-Mediated Dehydrogenation of Ketones, Aldehydes, Esters, Lactones and Amides. Eur J Org Chem 2010; 2010(20): 3779-3790.
| Crossref | Google Scholar |

47  Porth S, Bats JW, Trauner D, Giester G, Mulzer J. Insight into the Mechanism of the Saegusa Oxidation: Isolation of a Novel Palladium(0)–Tetraolefin Complex. Angew Chem Int Ed 1999; 38(13-14): 2015-2016.
| Crossref | Google Scholar |

48  Shimizu I, Minami I, Tsuji J. Palladium-catalyzed synthesis of α,β-unsaturated ketones from ketones via allyl enol carbonates. Tetrahedron Lett 1983; 24(17): 1797-1800.
| Crossref | Google Scholar |

49  Theissen RJ. Preparation of α,β-unsaturated carbonyl compunds. J Org Chem 1971; 36(6): 752-757.
| Crossref | Google Scholar |

50  Falvello LR, Garde R, Miqueleiz EM, Tomás M, Urriolabeitia EP. Evidence of C═H activation of acetone by a platinum(ii) complex. Synthesis and structural characterization of [Pt(CH2COCH3)Cl(bipy)] (bipy = 2,2′-bipyridyl). Inorg Chim Acta 1997; 264(1–2): 297-303.
| Crossref | Google Scholar |

51  Veya P, Floriani C, Chiesi-Villa A, Rizzoli C. Terminal and bridging bonding modes of the acetophenone enolate to palladium(ii): the structural evidence and the insertion of isocyanides. Organometallics 2002; 12(12): 4899-4907.
| Crossref | Google Scholar |

52  Vicente J, Abad JA, Chicote M-T, Abrisqueta M-D, Lorca J-A, Ramírez de Arellano MC. Synthesis of New Ketonyl Palladium(ii) and Platinum(ii) Complexes with Nitrogen-Donor Ligands. Crystal Structure of [Pt{CH2C(O)Me}2(bpy)]. Organometallics 1998; 17(8): 1564-1568.
| Crossref | Google Scholar |

53  Myers AG, Tanaka D, Mannion MR. Development of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates. J Am Chem Soc 2002; 124(38): 11250-11251.
| Crossref | Google Scholar |

54  Farnum DG, Johnson JR, Hess RE, Marshall TB, Webster B. Aldoketene Dimers and Trimers from Acid Chlorides. A Synthesis of Substituted 3-Hydroxycyclobutenones. J Am Chem Soc 1965; 87(22): 5191-5197.
| Crossref | Google Scholar |

55  Joshi BS, Dabholkar KDM, Gawad DH. Reaction of furanopyrones with aluminium chloride in benzene. Indian J Chem 1972; 10(6): 567-570.
| Google Scholar |

56  Lesslie M, Yang Y, Canty AJ, Piacentino E, Berthias F, Maitre P, Ryzhov V, O’Hair RAJ. Ligand-induced decarbonylation in diphosphine-ligated palladium acetates [CH3CO2Pd((PR2)2CH2)]+ (R = Me and Ph). Chem Commun 2018; 54(4): 346-349.
| Crossref | Google Scholar |

57  Grotjahn DB, Collins LSB, Wolpert M, Bikzhanova GA, Lo HC, Combs D, Hubbard JL. First direct structural comparison of complexes of the same metal fragment to ketenes in both C,C- and C,O-bonding modes. J Am Chem Soc 2001; 123(34): 8260-8270.
| Crossref | Google Scholar |

58  Xue L, Su W, Lin Z. A DFT study on the Pd-mediated decarboxylation process of aryl carboxylic acids. Dalton Trans 2010; 39(41): 9815-9822.
| Crossref | Google Scholar |

59  Zhang S-L, Fu Y, Shang R, Guo Q-X, Liu L. Theoretical Analysis of Factors Controlling Pd-Catalyzed Decarboxylative Coupling of Carboxylic Acids with Olefins. J Am Chem Soc 2010; 132(2): 638-646.
| Crossref | Google Scholar |

60  Ulrich H. Cycloaddition reactions of heterocumulenes. New York: Academic Press; 1967.

61  Woolley M, Ariafard A, Khairallah GN, Kwan KH, Donnelly PS, White JM, Canty AJ, Yates BF, O’Hair RAJ. Decarboxylative-Coupling of Allyl Acetate Catalyzed by Group 10 Organometallics, [(phen)M(CH3)]+. J Org Chem 2014; 79(24): 12056-12069.
| Crossref | Google Scholar |

62  Woolley MJ, Khairallah GN, da Silva G, Donnelly PS, Yates BF, O’Hair RAJ. Role of the Metal, Ligand, and Alkyl/Aryl Group in the Hydrolysis Reactions of Group 10 Organometallic Cations, [(L)M(R)]+. Organometallics 2013; 32: 6931-6944.
| Crossref | Google Scholar |

63  Donald WA, McKenzie CJ, O’Hair RAJ. C—H Bond Activation of Methanol and Ethanol by a High-Spin FeIVO Biomimetic Complex. Angew Chem Int Ed 2011; 50(36): 8379-8383.
| Crossref | Google Scholar |

64  Brydon SC, da Silva G, O’Hair RAJ, White JM. Experimental and Theoretical Investigations into the Mechanisms of Haliranium Ion π-Ligand Exchange Reactions with Cyclic Alkenes in the Gas Phase. Phys Chem Chem Phys 2021; 23(45): 25572-25589.
| Crossref | Google Scholar |

65  Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16 Rev. C.01. Wallingford, CT; 2016.

66  Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 2008; 120(1): 215-241.
| Crossref | Google Scholar |

67  Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 1990; 77(2): 123-141.
| Crossref | Google Scholar |

68  Dolg M, Wedig U, Stoll H, Preuss H. Energy‐adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys 1987; 86(2): 866-872.
| Crossref | Google Scholar |

69  Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 1973; 28(3): 213-222.
| Crossref | Google Scholar |

70  Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G. A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc–Cu, Y–Ag and La–Au. Chem Phys Lett 1993; 208(1): 111-114 A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu.
| Crossref | Google Scholar |

71  Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al–Bi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett 1993; 208(3): 237-240.
| Crossref | Google Scholar |

72  Barone V, Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J Phys Chem A 1998; 102(11): 1995-2001.
| Crossref | Google Scholar |

73  Fukui K. Formulation of the reaction coordinate. J Phys Chem 1970; 74(23): 4161-4163.
| Crossref | Google Scholar |

74  Fukui K. The path of chemical reactions – the IRC approach. Acc Chem Res 1981; 14(12): 363-368.
| Crossref | Google Scholar |

75  Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 1988; 38(6): 3098-3100.
| Crossref | Google Scholar |

76  Becke AD. Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98(7): 5648-5652.
| Crossref | Google Scholar |

77  Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37(2): 785-789.
| Crossref | Google Scholar |

78  Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem 1994; 98(45): 11623-11627.
| Crossref | Google Scholar |

79  Weigend F, Furche F, Ahlrichs R. Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. J Chem Phys 2003; 119(24): 12753-12762.
| Crossref | Google Scholar |

80  Okuno Y. Theoretical Investigation of the Mechanism of the Baeyer–Villiger Reaction in Non-polar Solvents. Chem Eur J 1997; 3(2): 212-218.
| Crossref | Google Scholar |

81  Keith JA, Carter EA. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals. J Chem Theory Comput 2012; 8(9): 3187-3206.
| Crossref | Google Scholar |