Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Halogenation of calix[4]arenes by [I(py)2]I3·2I2

Peter Hahn A , Till Köhler A , Martin Börner A and Berthold Kersting https://orcid.org/0000-0001-5386-2809 A *
+ Author Affiliations
- Author Affiliations

A Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany.

* Correspondence to: b.kersting@uni-leipzig.de

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 780-785 https://doi.org/10.1071/CH22031
Submitted: 8 February 2022  Accepted: 6 April 2022   Published: 26 May 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The iodination of calix[4]arene and one of its monofunctionalised derivatives by bis(pyridine)iodonium(I) triiodide, [I(py)2]I3·2I2 has been studied. The iodination reactions proceed in good yields at room temperature (r.t.) without any co-reagents affording the corresponding tetra- and tri-substituted calix[4]arenes. Only electron-rich phenol groups are iodinated by [I(py)2]I3·2I2. Phenolether or Schiff-base type arene rings remain unaffected. The crystal structure of the iodination reagent, first published in 1961, has been re-determined which a higher precision. The crystal structures of the two per-iodinated calix[4]arenes show that self-inclusion occurs in the solid state.

Keywords: bis(pyridinium)iodonium triiodide, calixarenes, coordination chemistry: structures, hypervalent compounds, iodine, polyhalides, Schiff base, selective iodination reagent, self‐inclusion.


References

[1]  de Meijere A, Bräse S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More. Weinheim, Germany: Wiley-VCH; 2014.

[2]  Gribble GW. Naturally Occurring Organohalogen Compounds - A Comprehensive Update. Wien, Austria: Springer; 2010.

[3]  NL Sloan, A Sutherland, Synthesis 2016, 48, 2969.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  W Hao, Y Liu, Beilstein J Org Chem 2015, 11, 2132.
         | Crossref | GoogleScholarGoogle Scholar | 26664634PubMed |

[5]  VVKM Kandepi, N Narender, Synthesis 2012, 44, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A Podgoršek, M Zupan, J Iskra, Angew Chem, Int Ed 2009, 48, 8424.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S Stavber, M Jereb, M Zupan, Synthesis 2008, 10, 1487.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J Barluenga, JM Gonzalez, MA Garcia-Martin, PJ Campos, G Asensio, J Org Chem 1993, 58, 2058.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J Barluenga, MA Rodriguez, PJ Campos, J Org Chem 1990, 55, 3104.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M Sdahl, J Conrad, C Braunberger, U Beifuss, RSC Advances 2019, 9, 19549.
         | Crossref | GoogleScholarGoogle Scholar | 35519358PubMed |

[11]  D Gutsche, Calixarenes: An Introduction, 2nd edn. Cambridge: RSC Publishing; 2008.

[12]  V Böhmer, Angew Chem Int Ed Engl 1995, 34, 713.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Steed JW, Atwood JL, Supramolecular Chemistry, 2nd edn. Chichester: John Wiley & Sons; 2009.

[14]  PF Hudrlik, WD Arasho, AM Hudrlik, J Org Chem 2007, 72, 8107.
         | Crossref | GoogleScholarGoogle Scholar | 17850095PubMed |

[15]  A Arduini, G Giorgi, A Pochini, A Secchi, F Ugozzoli, J Org Chem 2001, 66, 8302.
         | Crossref | GoogleScholarGoogle Scholar | 11735507PubMed |

[16]  X Cao, L Luo, F Zhang, F Miao, D Tian, H Li, Tetrahedron Lett 2014, 55, 2029.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  OG Barton, B Neumann, H-G Stammler, J Mattay, Org Biomol Chem 2008, 6, 104.
         | Crossref | GoogleScholarGoogle Scholar | 18075654PubMed |

[18]  N Kuhnert, A Le-Gresley, Tetrahedron Lett 2008, 49, 1274.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  JD Van Loon, A Arduini, L Coppi, W Verboom, A Pochini, R Ungaro, S Harkema, DN Reinhoudt, J Org Chem 1990, 55, 5639.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A Arduini, A Pochini, A Rizzi, AR Sicuri, R Ungaro, Tetrahedron Lett 1990, 31, 4653.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A Gunji, K Takahashi, Synth Commun 1998, 28, 3933.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  P Timmerman, W Verboom, DN Reinhoudt, A Arduini, S Grandi, AR Sicuri, A Pochini, R Ungaro, Synthesis 1994, 185.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A Arduini, WM McGregor, A Pochini, A Secchi, F Ugozzoli, R Ungaro, J Org Chem 1996, 61, 6881.
         | Crossref | GoogleScholarGoogle Scholar | 11667582PubMed |

[24]  E Pinkhassik, I Stibor, A Casnati, R Ungaro, J Org Chem 1997, 62, 8654.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  AMA van Wageningen, P Timmerman, JPM van Duynhoven, W Verboom, FCJM van Veggel, DN Reinhoudt, Chem Eur J 1997, 3, 639.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  B Klenke, W Friedrichsen, J Chem Soc, Perkin Trans 1998, 1, 3377.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  O Hassel, H Hope, Acta Chem Scand 1961, 15, 407.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  LJ Barbour, GW Orr, JL Atwood, Chem Commun 1997, 1439.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J Barluenga, Pure Appl Chem 1999, 71, 431.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J Barluenga, F González-Bobes, MC Murguía, SR Ananthoju, JM González, Chem-Eur J 2004, 10, 4206.
         | Crossref | GoogleScholarGoogle Scholar | 15352103PubMed |

[31]  RW Troff, T Mäkelä, F Topić, A Valkonen, K Raatikainen, K Rissanen, Eur J Org Chem 2013, 1617.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  PH Svensson, L Kloo, Chem Rev 2003, 103, 1649.
         | Crossref | GoogleScholarGoogle Scholar | 12744691PubMed |

[33]  N Beyer, G Steinfeld, V Lozan, S Naumov, R Flyunt, B Abel, B Kersting, Chem Eur J 2017, 23, 2303.
         | Crossref | GoogleScholarGoogle Scholar | 27787918PubMed |

[34]  M Golecki, N Beyer, G Steinfeld, V Lozan, S Voitekhovich, M Sehabi, J Möllmer, H-J Krüger, B Kersting, Angew Chem Int Ed 2014, 37, 9949.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M Bedin, A Karim, M Reitti, A-CC Carlsson, F Topić, M Cetina, F Pan, V Havel, F Al-Ameri, V Sindelar, K Rissanen, J Gräfenstein, M Erdélyi, Chem Sci 2015, 6, 3746.
         | Crossref | GoogleScholarGoogle Scholar | 29218144PubMed |

[36]  A Bondi, J Phys Chem 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  CA Hunter, Angew Chem, Int Ed Engl 1993, 32, 1584.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  LJ Barbour, GW Orr, JL Atwood, Chem Commun 1997, 1439.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  M Strobel, K Kita-Tokarczyk, A Taubert, C Vebert, PA Heiney, M Chami, W Meier, Adv Funct Mater 2006, 16, 252.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  Stoe & Cie. X-AREA; V1.90. Darmstadt, Germany: Stoe & Cie: 2020.

[41]  GM Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst 2015, C71, 3.

[42]  GM Sheldrick, SHELXT Integrated space-group and crystal structure determination. Acta Cryst 2015, C71, 3.
         | SHELXT Integrated space-group and crystal structure determination.Crossref | GoogleScholarGoogle Scholar |

[43]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 2009, 42, 339.
         | OLEX2: a complete structure solution, refinement and analysis program.Crossref | GoogleScholarGoogle Scholar |

[44]  Spek AL. PLATON - A Multipurpose Crystallographic Tool; Utrecht University, Utrecht, The Netherlands, 2000.

[45]  LJ Farrugia, ORTEP-3 for Windows – a version of ORTEP-III with a graphical user interface. J Appl Cryst 1997, 30, 565.
         | ORTEP-3 for Windows – a version of ORTEP-III with a graphical user interface.Crossref | GoogleScholarGoogle Scholar |

[46]  Cason C, Froehlich T, Kopp N, Parker R. POV-Ray for Windows, version 3.6.2msvc9.win64.