Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effective Dissolution of Biomass in Ionic Liquids by Irradiation of Non-Thermal Atmospheric Pressure Plasma

Kosuke Kuroda A D , Kai Shimomura A , Tatsuo Ishijima B , Kenji Takada A , Kazuaki Ninomiya C and Kenji Takahashi A D
+ Author Affiliations
- Author Affiliations

A Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

B Research Center for Sustainable Energy & Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

C Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

D Corresponding authors. Email: kkuroda@staff.kanazawa-u.ac.jp; ktkenji@staff.kanazawa-u.ac.jp

Australian Journal of Chemistry 70(6) 731-734 https://doi.org/10.1071/CH16554
Submitted: 30 September 2016  Accepted: 3 November 2016   Published: 29 November 2016

Abstract

Biomass was dissolved in ionic liquids under non-thermal atmospheric pressure plasma irradiation. On plasma irradiation, the amount of dissolved biomass in the ionic liquids increased from 15 to 29 mg for bagasse and from 26 to 36 mg for Japanese cedar. The high solubility was attributed to the deconstruction of the lignin network by active chemical species generated by the plasma. Selective extraction of cellulose from biomass was observed under plasma irradiation.


References

[1]  E. Adler, Wood Sci. Technol. 1977, 11, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXisVeruw%3D%3D&md5=82a838ccc04dfe73586750d79d331a1eCAS |

[2]  P. Oinonen, L. Zhang, M. Lawoko, G. Henriksson, Phytochemistry 2015, 111, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOntLjO&md5=ee47c75229413bc6e63e84f20c3a3c0eCAS |

[3]  T. Kondo, J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFKhs7g%3D&md5=f00fa4831513ad0aa99b39719629b886CAS |

[4]  Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 2002, 124, 9074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1eqsLk%3D&md5=e8b7d814a5804f6502e969e9aca303f0CAS |

[5]  A. Isogai, R. H. Atalla, Cellulose 1998, 5, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFyhtrc%3D&md5=58d20f35b33223d5e9f90d87e0d7fb91CAS |

[6]  C. L. McCormick, P. A. Callais, B. H. Hutchinson, Macromolecules 1985, 18, 2394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFOis7Y%3D&md5=5e961dda15ed30349c0169fcfdce4c26CAS |

[7]  H. Chanzy, A. Peguy, S. Chaunis, P. Monzie, J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktV2kt7o%3D&md5=b6e90685042ccf25adc22e1e41941390CAS |

[8]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=f0ffe87be9045c50cc3190b94e5e7d56CAS |

[9]  H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVajsrw%3D&md5=92eb068a77105ce27cd25e12be11b53dCAS |

[10]  Y. Fukaya, A. Sugimoto, H. Ohno, Biomacromolecules 2006, 7, 3295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gt7zL&md5=46974fa40cb9ba612f64dcf369ab01ceCAS |

[11]  M. Abe, Y. Fukaya, H. Ohno, Green Chem. 2010, 12, 1274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlyrurY%3D&md5=d043295614f125cada816cb4040fcd9fCAS |

[12]  K. Kuroda, Y. Fukaya, T. Yamada, H. Ohno, Anal. Methods 2015, 7, 1719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFegsb%2FJ&md5=9d59c4c9876df2e27f9cc8ce16e75d8cCAS |

[13]  M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=92323f6e591481c1a1481bbb767093dfCAS |

[14]  I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos, J. Agric. Food Chem. 2007, 55, 9142.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  K. Ohira, Y. Abe, M. Kawatsura, K. Suzuki, M. Mizuno, Y. Amano, T. Itoh, ChemSusChem 2012, 5, 388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSmsLo%3D&md5=080f8f98e5828d9fdc38aa4ae33ceb63CAS |

[16]  H. Liu, K. L. Sale, B. M. Holmes, B. A. Simmons, S. Singh, J. Phys. Chem. B 2010, 114, 4293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVymsro%3D&md5=22776e83a5d58f6c187999722308c9efCAS |

[17]  K. Yoshioka, T. Yamada, H. Ohno, H. Miyafuji, RSC Adv. 2015, 5, 72405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOgtrrM&md5=82fc9d2e0859f958db64ad96e2604623CAS |

[18]  A. Brandt, J. Gräsvik, J. P. Hallett, T. Welton, Green Chem. 2013, 15, 550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFOlurw%3D&md5=32306f7c37bbf25bdfd1f84a986557cbCAS |

[19]  W. Y. Li, N. Sun, B. Stoner, X. Y. Jiang, X. M. Lu, R. D. Rogers, Green Chem. 2011, 13, 2038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGhtrc%3D&md5=86f8d9f13649f437f92ca25950a7c5e4CAS |

[20]  M. T. Clough, K. Geyer, P. A. Hunt, J. Mertes, T. Welton, Phys. Chem. Chem. Phys. 2013, 15, 20480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOmtr%2FO&md5=df407c62c2cd1638921de4f829429865CAS |

[21]  M. Abe, S. Yamanaka, H. Yamada, T. Yamada, H. Ohno, Green Chem. 2015, 17, 4432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWjur3I&md5=02321c9dd7227464373687eea601e4b5CAS |

[22]  M. Abe, Y. Fukaya, H. Ohno, Chem. Commun. 2012, 48, 1808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWrsg%3D%3D&md5=0275920f6b02600e2f906972f725a309CAS |

[23]  A. Wu, J. M. Lauzon, I. Andriani, B. R. James, RSC Adv. 2014, 4, 17931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlSmtrs%3D&md5=1cfedc876921b99297aa8e78d315cb01CAS |

[24]  F. Tochikubo, Y. Furuta, S. Uchida, T. Watanabe, Jpn. J. Appl. Phys. 2006, 45, 2743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVOisbg%3D&md5=69e5fc9c5fa768702601271fcab46ca2CAS |

[25]  S. Kongmany, H. Matsuura, M. Furuta, S. Okuda, K. Imamura, Y. Maeda, J. Phys.: Conf. Ser. 2013, 441, 012006.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. Himeno, Y. Ogura, T. Shirafuji, J. Phys.: Conf. Ser. 2014, 518, 012021.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. Ishijima, H. Hotta, H. Sugai, M. Sato, Appl. Phys. Lett. 2007, 91, 121501.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  K. Kuroda, T. Ishijima, T. Kaga, K. Shiomomura, K. Ninomiya, K. Takahashi, Chem. Lett. 2015, 44, 1473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotVertbo%3D&md5=77f85869f8e5455bcd5fbbd19e6b3de6CAS |

[29]  T. Ishijima, R. Saito, H. Sugihara, H. Toyoda, Trans. Mater. Res. Soc. Jpn. 2011, 36, 475.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2iurvI&md5=461ab689df9725876525d1ec58f4da5fCAS |

[30]  T. Ishijima, K. Nosaka, Y. Tanaka, Y. Uesugi, Y. Goto, H. Horibe, Appl. Phys. Lett. 2013, 103, 142101.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  O. Höfft, F. Endres, Phys. Chem. Chem. Phys. 2011, 13, 13472.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. Yu, L. Y. Zhai, Q. Zhou, C. P. Li, X. L. Zhang, Appl. Catal., A 2012, 419–420, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. Behar, C. Gonzalez, P. Neta, J. Phys. Chem. A 2001, 105, 7607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVSitL8%3D&md5=f16efaf95dfd841844b822d014295169CAS |

[34]  S. Mukasa, S. Nomura, H. Toyota, T. Maehara, F. Abe, A. Kawashima, J. Appl. Phys. 2009, 106, 113302.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Mizukoshi, R. Katagiri, H. Horibe, S. Hatanaka, M. Asano, Y. Nishimura, Chem. Lett. 2015, 44, 495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvFelt7o%3D&md5=2bee9b377e32c01d00f2154aa1e1b891CAS |

[36]  G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 1988, 17, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFyisLc%3D&md5=27e0eed96f52601481ea94aa8dc09be7CAS |

[37]  P. Neta, R. E. Huie, A. B. Ross, J. Phys. Chem. Ref. Data 1988, 17, 1027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFyitro%3D&md5=2c853de7a4b10fbeb3145b279851fb07CAS |

[38]  A. Suliter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of Structural Carbohydrates and Lignin in Biomass 2008 (National Renewable Energy Laboratory: Golden, CO).

[39]  K. Ninomiya, S. Omote, C. Ogino, K. Kuroda, M. Noguchi, T. Endo, R. Kakuchi, N. Shimizu, K. Takahashi, Bioresour. Technol. 2015, 189, 203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFylur8%3D&md5=a95386e9676ba46f8a854464cbec0ee2CAS |