Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Oxyhalogen–Sulfur Chemistry: Kinetics and Mechanism of Oxidation of N-Acetyl-l-methionine by Aqueous Iodine and Acidified Iodate

Kudzanai Chipiso A , Wilbes Mbiya A , Moshood K. Morakinyo A and Reuben H. Simoyi A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Portland State University, Portland, OR 97207-0751, USA.

B School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, Republic of South Africa.

C Corresponding author. Email: rsimoyi@pdx.edu

Australian Journal of Chemistry 67(4) 626-635 https://doi.org/10.1071/CH13483
Submitted: 12 September 2013  Accepted: 6 November 2013   Published: 17 January 2014

Abstract

The use of N-acetyl-l-methionine (NAM) as a bio-available source for methionine supplementation as well as its ability to reduce the toxicity of acetaminophen poisoning has been reported. Its interaction with the complex physiological matrix, however, has not been thoroughly investigated. This manuscript reports on the kinetics and mechanism of oxidation of NAM by acidic iodate and aqueous iodine. Oxidation of NAM proceeds by a two electron transfer process resulting in formation of a sole product: N-acetyl-l-methionine sulfoxide (NAMS=O). Data from electrospray ionization mass spectrometry confirmed the product of oxidation as NAMS=O. The stoichiometry of the reaction was deduced to be IO3 + 3NAM → I + 3NAMS=O. In excess iodate, the stoichiometry was deduced to be 2IO3 + 5NAM + 2H+ → I2 + 5NAMS=O + H2O. The reaction between aqueous iodine and NAM gave a 1 : 1 stoichiometric ratio: NAM + I2 + H2O → NAMS=O + 2I + H+. This reaction was relatively rapid when compared with that between NAM and iodate. It did, however, exhibit some auto-inhibitory effects through the formation of triiodide (I3) which is a relatively inert electrophile when compared with aqueous iodine. A simple mechanism containing 11 reactions gave a reasonably good fit to the experimental data.


References

[1]  R. B. Freedman, FEBS Lett. 1979, 97, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtlCgs7s%3D&md5=36fe46cc4a1865071467fb40afb5f20eCAS |

[2]  S. M. Deneke, Curr. Top. Cell. Regul. 2001, 36, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. D. Chinevere, R. D. Sawyer, A. R. Creer, R. K. Conlee, A. C. Parcell, J. Appl. Physiol. 2002, 93, 1590.
         | 1:CAS:528:DC%2BD38Xosl2lsro%3D&md5=5cea6e66968f9866d4c70dbf498bd575CAS | 12381742PubMed |

[4]  J. T. Rotruck, R. W. Boggs, J. Nutr. 1975, 105, 331.
         | 1:CAS:528:DyaE2MXhtlyisbw%3D&md5=71c3a1e1cf11073dcd8ff4cdf4a3c297CAS | 1117344PubMed |

[5]  H. Qavi, S. Kit, Biochem. Genet. 1980, 18, 669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXnvFSntQ%3D%3D&md5=8974591cca1602a98bd11a1fd99b64aeCAS | 6781469PubMed |

[6]  Y. E. Miller, B. Kao, J. Immunoassay 1989, 10, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktF2rsrY%3D&md5=13a5ab3070baec30f74e783bfb31c5eaCAS | 2745715PubMed |

[7]  T. Smith, M. S. Ghandour, P. L. Wood, J. Neurochem. 2011, 118, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtValtrnP&md5=053f34826e32b9d6451df36623461e7fCAS | 21554324PubMed |

[8]  R. W. Boggs, J. T. Rotruck, R. A. Damico, J. Nutr. 1975, 105, 326.
         | 1:CAS:528:DyaE2MXhtlyisb8%3D&md5=6846480f4b792f349008129b645a437dCAS | 1167905PubMed |

[9]  D. H. Baker, J. Nutr. 1979, 109, 970.
         | 1:CAS:528:DyaE1MXkvFSjsbk%3D&md5=118fabbec499389b0be38c5a7906d378CAS | 448454PubMed |

[10]  T. T. Daabees, D. W. Andersen, W. L. Zike, L. J. Filer, L. D. Stegink, J. Nutr. 1984, 114, 1541.
         | 1:CAS:528:DyaL2cXls12lt7w%3D&md5=ce9830e66c2d4012944ea24d9a85bc3aCAS | 6470816PubMed |

[11]  R. W. Boggs, Adv. Exp. Med. Biol. 1978, 105, 571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXjslyqsA%3D%3D&md5=3f803752e74caa0dc52fcbf062729355CAS | 103374PubMed |

[12]  P. E. Ballance, J. Sci. Food Agric. 1961, 12, 532.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. Lertratanangkoon, J. M. Scimeca, Toxicol. Appl. Pharmacol. 1993, 122, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpvVKntA%3D%3D&md5=563b74666b35592be403c9b270d49fc7CAS | 8212001PubMed |

[14]  L. A. Skoglund, K. Ingebrigtsen, I. Nafstad, O. Aalen, Biochem. Pharmacol. 1986, 35, 3071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVejt74%3D&md5=c8412b8e2a3289e997920c303ebca9a7CAS | 3753517PubMed |

[15]  F. Donnarumma, M. Schober, J. Greilberger, V. Matzi, J. Lindenmann, A. Maier, R. Herwig, R. Wintersteiger, J. Sep. Sci. 2011, 34, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVCjsw%3D%3D&md5=0fbe0a4899f96b230f8310031df35bd6CAS | 21246718PubMed |

[16]  J. T. Rotruck, R. W. Boggs, J. Nutr. 1977, 107, 357.
         | 1:CAS:528:DyaE2sXhsFCgt7w%3D&md5=5faa82f3da581564d1d0947caa070a5aCAS | 845673PubMed |

[17]  U. Burner, W. Jantschko, C. Obinger, FEBS Lett. 1999, 443, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1SgtLg%3D&md5=71ed08207769a406e1e26d5c401014e0CAS | 10025950PubMed |

[18]  R. B. Fox, J. Clin. Invest. 1984, 74, 1456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVGlsbo%3D&md5=fb31252750fabfd4bb4dbb6325053ed1CAS | 6090504PubMed |

[19]  T. R. Green, J. H. Fellman, A. L. Eicher, FEBS Lett. 1985, 192, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvVGiuw%3D%3D&md5=04f6fac225c1f757f92b02bac757e1a6CAS | 2996939PubMed |

[20]  D. B. Learn, V. A. Fried, E. L. Thomas, J. Leukoc. Biol. 1990, 48, 174.
         | 1:CAS:528:DyaK3cXlslSht7g%3D&md5=213058d527e314772dfd1a92949765c4CAS | 2370482PubMed |

[21]  H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVClsbo%3D&md5=d62265e8e085378b1bf971d272eb4ff5CAS | 11671879PubMed |

[22]  H. A. Liebhafsky, G. M. Roe, Int. J. Chem. Kinet. 1979, 11, 693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXks1egsL8%3D&md5=b9acebd83375b28fd8e6e39a3a0a1d2dCAS |

[23]  T. C. Bruice, A. B. Sayigh, J. Am. Chem. Soc. 1959, 81, 3416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXntFSq&md5=69713b0378feab44b82ff255b4d3fe4fCAS |

[24]  T. C. Bruice, R. T. Markiw, J. Am. Chem. Soc. 1957, 79, 3150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXosFKmtg%3D%3D&md5=420ba1c3e4f21e6f2a0597ad8b88ccd8CAS |

[25]  S. Carballal, B. Alvarez, L. Turell, H. Botti, B. A. Freeman, R. Radi, Amino Acids 2007, 32, 543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVGnsbo%3D&md5=2720db9f2cd97ba2fda96edeb2d39c70CAS | 17061035PubMed |

[26]  G. Rabai, A. Kaminaga, I. Hanazaki, J. Phys. Chem. 1995, 99, 9795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFWqs7Y%3D&md5=ce15739d6deb89bbe3b86aeb09033380CAS |

[27]  G. Schmitz, Phys. Chem. Chem. Phys. 2000, 2, 4041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtl2ktLg%3D&md5=ea27fb84b251ff736a44402b2f76cfb2CAS |

[28]  Y. Xie, M. R. McDonald, D. W. Margerum, Inorg. Chem. 1999, 38, 3938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVaksbs%3D&md5=0114e93b5d95920d0f0b505fc86d2f2cCAS |

[29]  G. Schmitz, Phys. Chem. Chem. Phys. 1999, 1, 1909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVajtrg%3D&md5=8b64532d2e5490ed162f4988be1cb688CAS |

[30]  R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2004, 108, 1018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVersA%3D%3D&md5=56742ea6389c2a0566b4cd170ad27a3cCAS |

[31]  E. Chikwana, B. Davis, M. K. Morakinyo, R. H. Simoyi, Can. J. Chem. 2009, 87, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlyhsbo%3D&md5=9b0637a25e3f5ebf25da4ecc88db8314CAS |

[32]  J. Pitha, L. Szente, J. Greenberg, J. Pharm. Sci. 1983, 72, 665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslKktbg%3D&md5=28cb8f45cee53e7dbde1e31b7aef9e9fCAS | 6576129PubMed |

[33]  K. M. Towle, J. L. Chaytor, H. Liu, P. Austin, M. Roberge, C. D. Roskelley, J. C. Vederas, Org. Biomol. Chem. 2013, 11, 1476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFamsbc%3D&md5=f7aed051de03dc5114ef5fe1d5c95a66CAS | 23334605PubMed |

[34]  D. H. Turner, G. W. Flynn, N. Sutin, J. V. Beitz, J. Am. Chem. Soc. 1972, 94, 1554.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtVCgsr4%3D&md5=ba990aaf2aec113a37b0fa605b4e8413CAS |

[35]  B. S. Yiin, D. W. Margerum, Inorg. Chem. 1990, 29, 1559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1Chsrw%3D&md5=ef4c75bbc717ddbc2c86d3d845915976CAS |

[36]  M. Eigen, K. Kustin, J. Am. Chem. Soc. 1962, 84, 1355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktVOrtr8%3D&md5=1989383130a6ded2e2f13909cea37687CAS |

[37]  S. Naidich, J. E. Ricci, J. Am. Chem. Soc. 1939, 61, 3268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3cXlvVSn&md5=5dab8c59d12d8de512ca9456e1a166faCAS |

[38]  N. C. Li, Y.-T. Lo, J. Am. Chem. Soc. 1941, 63, 394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXht12gtA%3D%3D&md5=f4d43b87b1097de5417d285fbfdf6ad7CAS |

[39]  R. W. Ramette, J. Chem. Educ. 1959, 36, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXptlGguw%3D%3D&md5=84219074d284d70ce5a1a4b1678fa260CAS |