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Abstract. Demand for therapeutic honey is driving establishment of Leptospermum plantations. This study developed
micropropagation methods for two species – Leptospermum polygalifolium Salisb. and L. scoparium J.R.Forst. & G.
Forst. The study determined how shoot proliferation and adventitious rooting were influenced by the original explant
position on the seedling and the concentration of benzyladenine (BA) in the proliferation medium. Hormone-free node
culture was highly effective for both species. Nodal explants often formed roots in the absence of BA and developed
elongated axillary shoots. Median shoot numbers of 584 and 659 were formed in 31–32 weeks from a single
L. polygalifolium or L. scoparium seed, respectively. A low BA dose was effective for callogenesis and shoot
proliferation of L. polygalifolium, but not L. scoparium. The median number of shoots produced from a single
L. polygalifolium seed was 630 using 2.22-mM BA. This dose induced extremely high shoot numbers in some clones
because explants often produced extensive callus and multiple short shoots. Shoots formed adventitious roots without
indole-3-butyric acid and plantlets were acclimatised to nursery conditions. The original explant position did not
influence shoot proliferation or adventitious rooting. Leptospermum polygalifolium and L. scoparium proved amenable
to micropropagation, facilitating rapid establishment of nectar plantations.
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Introduction

M�anuka honey has been harvested traditionally in New
Zealand from hives of honeybees that forage on the m�anuka
tree, Leptospermum scoparium (Morgan et al. 2019; Bong
et al. 2021; Schmidt et al. 2021). M�anuka honey contains high
levels of the antimicrobial and wound-healing compound,
methylglyoxal (MGO), which is converted gradually in the
honey from dihydroxyacetone (DHA) that is found in
L. scoparium nectar (Carter et al. 2016; Cokcetin et al.
2016; Grainger et al. 2016; Niaz et al. 2017; Schmidt et al.
2021). Honeybees that forage on L. scoparium and some other
Leptospermum species in Australia also produce honey that
contains high levels of MGO (Cokcetin et al. 2016; Pappalardo
et al. 2016; Williams et al. 2018). Demand for therapeutic
MGO-containing honey is greater than supply, so there is a
drive to establish Leptospermum plantations to provide nectar
for therapeutic honey production.

One of the limitations to plantation establishment has been
the difficulty in propagating Leptospermum species as
seedlings because the seed can be difficult to extract from
the fruit or difficult to germinate (Shipton and Jackes 1986;

Lyne and Crisp 1996; Battersby et al. 2017). Therefore, clonal
propagation methods have been sought for propagating
Leptospermum species by tissue culture and cuttings. Clonal
propagation has been used to propagate limited numbers of
elite clones in clonal plantation programs (Trueman 2006;
Xavier et al. 2013; Trueman et al. 2018). These programs
have the advantage that individual clones have been selected
for desirable mature-age characteristics such as trunk
straightness, wood volume or fruit yield (Aimers-Halliday
and Burdon 2003; Mitchell et al. 2004; Wendling et al.
2014a, 2014b). Clonal plantation programs have the
disadvantage that selected clones have often undergone
maturation, reducing their propagation capacity and
growth potential (Aimers-Halliday and Burdon 2003; Pijut
et al. 2011; Wendling et al. 2014a, 2014b). Increasingly,
clonal propagation is used instead to propagate multiple
clones that are the progeny of selected mother trees in
‘vegetative family plantation programs’ (Lee 2007;
Trueman et al. 2018). These programs have the
disadvantage that not all clones share the full suite of
desirable characteristics of the selected mother tree.
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However, a vegetative family program has the advantage that
the clones are juvenile, often giving them much higher
propagation capacity and growth potential than mature clones
(McMahon et al. 2013, 2014; Wendling et al. 2014a, 2014b).

The current study is part of a program focussed on
developing clonal propagation methods for juvenile
germplasm of therapeutic-honey Leptospermum species.
Little was known about the micropropagation capacity of
most Leptospermum species, although an extensive array of
micropropagation methods has been developed for other
Myrtaceae species from the eucalypt genera, Corymbia and
Eucalyptus. These methods employ cytokinins, typically
benzyladenine (BA), to promote axillary bud outgrowth or
adventitious shoot production (Trueman et al. 2018). Shoots of
L. scoparium and its hybrids have been proliferated in vitro
in full-strength Murashige and Skoog (MS) medium
(Murashige and Skoog 1962) containing BA at
0.00–4.44 mM (Braun and Leung 1991; Seelye et al. 2001;
Fan et al. 2013). Acclimatisation of plantlets to nursery
conditions proved difficult for L. scoparium (Braun and
Leung 1991) but was successful for plantlets of
L. scoparium � L. rotundifolium backcrossed to
L. rotundifolium (Seelye et al. 2001). Eucalypt shoots are
usually proliferated in full-strength MS media or MS salts
that are supplemented with BA at 0.44–6.67 mM (Niccol et al.
1994; Hervé et al. 2001; Glocke et al. 2005; Arya et al. 2009;
Hung and Trueman 2012). However, eucalypt shoot
proliferation can sometimes be prolific in media lacking BA
(Brondani et al. 2013; Trueman et al. 2018). Hormone-free
medium promotes extensive shoot elongation and the
production of multiple nodes, whereas media containing BA
promote callogenesis and the production of multiple short
shoots, in cultures of Corymbia torelliana � C. citriodora
(Trueman and Richardson 2007; Hung and Trueman 2010).
Shoot proliferation potential in the hormone-free medium was
influenced by the position on the seedling from which the
original explant was taken, with proliferation being higher
from the first node (i.e. cotyledonary node) and second node
than more-apical nodes (Hung and Trueman 2011). These
types of positional effects on the growth and development
of propagules are termed ‘topophysis’, and an understanding
of topophysic effects can lead to great improvements in the
efficiency of a propagation system (George 1993; Mitchell
et al. 2004; Hung and Trueman 2011; Wendling et al. 2015).

This study aimed to develop micropropagation methods for
two species – L. polygalifolium and L. scoparium – that are
highly sought for establishing therapeutic honey plantations.
The study aimed to determine the extent to which shoot
proliferation and nursery acclimatisation are influenced by
the concentration of BA in the proliferation medium. The
study also aimed to assess the extent to which micropropagation
capacity is affected by the position of the initial explant on the
original seedling.

Materials and methods
Seed germination
Seeds of a local subtropical provenance of L. polygalifolium
were provided by Dr Peter Brooks (University of the Sunshine

Coast, Sippy Downs, Australia) and seeds of selected
L. scoparium from southern Australia were provided by
Mr Ted Allender (ERA Nurseries, Hamilton, Australia).
Batches of ~100 seeds of each species were washed in 70%
ethanol (v/v) for 1 min in 70-mL vials containing one drop of
Tween 20. They were then rinsed in sterile distilled water.
Each batch was then separated into batches of 25 seeds, and
each new batch was transferred into a new vial containing 1%
sodium hypochlorite with one drop of Tween 20. The vials
were swirled on an orbital shaker at 240 rpm for 10 min. The
seeds were rinsed in sterile distilled water. Seeds were placed
on sterile paper to remove excess liquid between solutions.
Seeds were plated (25 seeds per 90-mm-diameter Petri dish)
onto germination medium consisting of half-strength MS basal
salts (PhytoTechnology Laboratories, Shawnee Mission, KS)
with 58.4-mM sucrose, solidified with 8 g L–1 of agar (Bacto
Laboratories, Liverpool, Australia) and with pH adjusted to
5.8 before autoclaving at 121�C for 20 min. This procedure was
repeated to create 90 dishes, each of 25 seeds, per species. The
seeds were maintained at 28�C under a 16-h photoperiod
(~100 mmol m–2 s–1 with fluorescent tubes) for 3–4 weeks.

Shoot induction (first passage)
All shoots greater than 5-mm length were excised at the root
collar and transferred (5 shoots per jar) into 375-mL glass jars
containing 50 mL of shoot induction medium consisting of
full-strength MS medium with vitamins (PhytoTechnology
Laboratories) with 87.6-mM sucrose, solidified with 8 g L–1

of agar and with pH adjusted to 5.8 before autoclaving at 121�C
for 20 min. The shoots were maintained at 28�C under a 16-h
photoperiod (~100 mmol m–2 s–1 with fluorescent tubes) for
5 weeks. The shoots were then dissected into their individual
nodes by cutting immediately above each node (Fig. 1a). The
apical bud was regarded as a single node.

Shoot proliferation (second, third and fourth passages)
Each node from each seedling was transferred to a 375-mL
glass jar containing full-strength MS medium with vitamins,
with 87.6-mM sucrose and one of the following five hormone
concentrations: 0.0-, 2.2-, 4.4-, 8.9- or 17.8-mM BA (Sigma,
Saint Louis, MO, USA). All nodes from a single seedling were
placed in the one jar (i.e. one clone per jar) for the first
proliferation passage. The original position of each node on
the seedling was marked on the outside of the jar, with ‘1’
being the cotyledonary node and ‘2,’ ‘3’, ‘4’, 5’ or ‘6’
representing progressively more-apical nodes. At least
15 clones per BA treatment were available for each species,
and each clone number was marked on the outside of the jar.
The shoots were maintained at 28�C under a 16-h photoperiod
(~100 mmol m–2 s–1 with fluorescent tubes). The shoots were
maintained for 7 weeks, then dissected into their nodes and
transferred to fresh medium of the same BA concentration for a
second proliferation passage of 8 weeks. They were then
dissected into their nodes and transferred again to fresh
medium of the same BA concentration for a third
proliferation passage of 8 weeks. The number of shoots
with roots and the number of nodes available for transfer
from each of the original-seedling node positions was counted
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at the end of each proliferation passage, i.e. after 7, 15 and
23 weeks in proliferation medium. The percentage of shoots
per clone with roots and the number of available nodes per
clone was then calculated from the data obtained from each of
the original-seedling node positions.

Root induction
A random subsample of 20 shoots >15 mm long (where
available) in hormone-free medium was taken from each
original seedling-node position of each clone after the third
proliferation passage. These shoots were transferred randomly
into one of four glass jars (five shoots per jar) containing
50 mL of half-strength MS medium with 58.4-mM sucrose,
8 g L–1 of agar and either 0.0-, 4.9-, 19.6- or 78.4-mM indole-
3-butyric acid (IBA). The shoots were maintained in this
medium for 24 h in darkness at 24�C. They were then
transferred to hormone-free half-strength MS medium with
58.4-mM sucrose and 8 g L–1 of agar, where they were
maintained for 6 days in darkness and then 3 weeks at
~100 mmol m–2 s–1 irradiance. The same process was
applied to shoots from proliferation medium containing
2.2-mM BA, except that these shoots were transferred first
to hormone-free proliferation medium for 5 weeks to allow
shoot elongation before they were transferred to the IBA
treatments.

Nursery acclimatisation
Plantlets were then transferred into 70-mL propagation tubes
(Darby et al. 2021) containing eucalypt seedling mix
consisting of a 75/25 (v/v) mixture of shredded pine bark
and perlite, with 3 kg of 8–9-month slow-release Osmocote
fertiliser (Scotts International, Heerlen, Netherlands), 3 kg
of lime (Unimin, Lilydale, Australia), 1 kg of gypsum
(Queensland Organics, Narangba, Australia), 1 kg of
Micromax micronutrients (Scotts Australia, Baulkham Hills,
Australia) and 1 kg ofHydroflowwetting agent (Scotts Australia)
incorporated per square metre (Trueman et al. 2013a, 2013b,
2013c, 2013d, 2014). The plantlets were maintained at 28�C
under a 16-h photoperiod (~50 mmol m–2 s–1) in a sealed 80-L
plastic tub for a further 4 weeks. The tubs were then transferred
to a polyethylene propagation chamber that was custom-built
within a glasshouse. Plantlets were maintained within the
sealed tub and under 50% shadecloth (~85 mmol m–2 s–1) for
3 days, and then the tub lid was opened progressively at 4-day
intervals and the shadecloth removed to increase irradiance to
~380 mmol m–2 s–1 over a further 12 days. Mist irrigation
was provided for 1 min every 10 min from 0700 to
1800 hours. The percentage of shoots from each jar that had
survived and formed roots was recorded after 8 weeks in the
glasshouse.

Statistical analyses
Shoot proliferation data was analysed by Kruskal–Wallis test
because shoot number data was not normally distributed.
Dunn’s tests with Bonferroni corrections were used when
significant differences among the medians were detected by
Kruskal–Wallis test. Medians are presented with 25th and 75th
percentiles, 10th and 90th percentiles, and outliers. Rooting
data was analysed by t-test or by random block ANOVA
because adventitious rooting data was normally distributed.
Clones were regarded as blocks. Means are presented with
standard errors. Differences between medians or means were
regarded as significant at P < 0.05.

Results

Shoot proliferation

The highest production of both L. polygalifolium and
L. scoparium shoots during the first proliferation passage
occurred in hormone-free medium (Fig. 2a, b). Explants
developed new nodes on elongating axillary shoots in the
absence of BA (Fig. 1b). L. polygalifolium also produced
multiple shoots during the second and third proliferation
passages in medium containing 2.22-mM BA (Fig. 2c, e), with
these being short shoots that developed either from or through
callus (Fig. 1c). Extensive explant death occurred in media
containing 4.44–17.78-mM BA for L. polygalifolium (Fig. 2c, e)
and 2.22–17.78-mM BA for L. scoparium (Fig. 2d, f). As a
result, the most effective BA concentrations for shoot
proliferation were 0.00 or 2.22 mM for L. polygalifolium
(Fig. 2e) and 0.00 mM for L. scoparium (Fig. 2f). The
median (range) numbers of shoots produced per clone were
584 (0–5427) in 0.0-mM BA and 630 (0–58 635) in 2.2-mM
BA for L. polygalifolium and 659 (0–5985) in 0.0-mM BA
for L. scoparium.

(a)

(e)

(b) (c)

(d)

Fig. 1. Micropropagation of Leptospermum polygalifolium and
L. scoparium. (a) In-vitro seedling dissected into six nodes (N1–N6) for
transfer to proliferation medium; (b) L. polygalifolium shoot forming
adventitious roots (at base) and elongating axillary shoots in the absence
of benzyladenine (BA); (c) L. polygalifolium producing multiple short
shoots from or through callus in medium containing 2.22-mM BA;
(d) L. polygalifolium shoot that has formed three adventitious roots in
medium lacking indole-3-butyric acid; (e) L. scoparium plantlets that have
been acclimatised to nursery conditions. Scale bars: 2 cm.
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Root induction and nursery acclimatisation

Extensive shoot death occurred when L. polygalifolium and
L. scoparium were treated with 4.9-, 19.6- or 78.4-mM IBA
(data not presented). However, rooting occurred in medium
that lacked IBA (Fig. 1d), and many of these plantlets were
acclimatised successfully to nursery conditions (Fig. 1e).
The percentages of shoots that formed roots in the absence
of IBA and acclimatised successfully to nursery conditions
were 31� 6 and 30� 9% for L. polygalifolium shoots that had
been proliferated in media containing 0.00- or 2.22-mM BA
respectively (Fig. 3a). The percentages of shoots that formed
roots and acclimatised successfully were 44� 9 and 29� 10%
for L. scoparium shoots that had been proliferated in media
containing 0.00- or 2.22-mM BA respectively (Fig. 3b).

Topophysic effects on proliferation, rooting and nursery
acclimatisation

The position of the initial explant on the original seedling
did not significantly affect the proliferation capacity of
L. polygalifolium or L. scoparium shoots in media
containing either 0.00- or 2.22-mM BA (Fig. 4). Many
shoots formed roots in proliferation medium containing
0.00-mM BA (Table 1) but rooting was almost never

observed in media containing BA (data not shown). Root
formation in the hormone-free proliferation medium was not
affected significantly by the original explant position
(Table 1). Root induction and nursery acclimatisation of

7 weeks 7 weeks

15 weeks15 weeks

23 weeks 23 weeks

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Effect of benzyladenine (BA) concentration on the number of shoots produced per clone of (a, c, e) Leptospermum polygalifolium or (b, d, f)
L. scoparium after (a, b) 7 weeks, (c, d) 15 weeks and (e, f) 23 weeks in proliferation medium. Medians are presented with 25th and 75th percentiles
(boxes), 10th and 90th percentiles (whiskers), and outliers. Medians with different letters within a species and time point are significantly different
(Kruskal–Wallis and Dunn’s test with Bonferroni corrections, P < 0.05, n = 15–19 clones).

(a) L. polygalifolium (b) L. scoparium
60

40

20

2.22 2.220.000.00
0

Fig. 3. Effect of benzyladenine (BA) concentration in the proliferation
medium on the percentage of (a) Leptospermum polygalifolium or
(b) L. scoparium shoots that subsequently formed roots in hormone-
free medium and had survived after 8 weeks in the laboratory and
8 weeks acclimatising in the glasshouse. Means (+s.e.) within a species
do not differ significantly (t-test, P > 0.05, n = 11–15 clones).
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plantlets was also not influenced significantly by the original
explant position (Table 2).

Discussion

Seedling shoots of L. polygalifolium and L. scoparium proved
highly susceptible to shoot death in the presence of BA doses,
4.44–17.78 and 2.22–17.78 mM respectively that are
commonly used for proliferation of eucalypt shoots. These
doses are used for shoot proliferation of eucalypts including
C. citriodora, C. torelliana � C. citriodora, Eucalyptus
cloeziana, E. dunnii, E. erythronema and E. stricklandii
(Tanabe et al. 1996; Glocke et al. 2005; Hung and
Trueman 2012; Navroski et al. 2014; Oliveira et al. 2015;
Trueman et al. 2018). However, hormone-free medium
was highly effective for shoot proliferation of both
L. polygalifolium and L. scoparium. Nodal explants often
formed roots in this medium and they developed elongated

axillary shoots from existing axillary buds. As a result, median
shoot numbers of 584 and 659 could be formed in 31–32 weeks
from plating of a single L. polygalifolium or L. scoparium seed,
respectively. This type of node culture in BA-free medium has
also proven highly effective for propagation of C. torelliana �
C. citriodora (Trueman and Richardson 2007; Hung and
Trueman 2010). A potential advantage of node culture is
that shoot proliferation is not associated with the formation
of callus, and so this method reduces the risk of releasing or
inducing somaclonal variation in the propagated plant
population (George 1993).

Useof a lowdoseofBA(2.22mM)wasalso effective for shoot
proliferation of L. polygalifolium, but not L. scoparium. The
median number of shoots produced from a single
L. polygalifolium seed in this medium (630) was similar to the
number produced in BA-free medium (i.e. 584). However, BA
had the capacity to induce extremely high numbers of shoots in
some clones. This was because explants in BA-containing

(a) L. polygalifolium
0.00-µM BA

(c) L. scoparium
0.00-µM BA

(d) L. scoparium
2.22-µM BA

(b) L. polygalifolium
2.22-µM BA

Original node position

N
um

be
r 

of
 s
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s 
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r 
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Fig. 4. Influence of the original node position on the number of shoots produced per seedling node of (a, b) Leptospermum polygalifolium or
(c, d) L. scoparium after 23 weeks in proliferation medium containing (a, c) 0.00-mM benzyladenine (BA) or (b, d) 2.22-mM BA. Medians are presented
with 25th and 75th percentiles (boxes), 10th and 90th percentiles (whiskers), and outliers. Medians within a species and BA concentration do not differ
significantly (Kruskal–Wallis test, P > 0.05, n = 8–19 clones).

Table 1. Influence of the original seedling node position on the percentage of Leptospermum polygalifolium and L. scoparium shoots that formed
roots after 7, 15 and 23 weeks in hormone-free proliferation medium

Means (�s.e.) within a species and period in proliferation medium do not differ significantly (random block ANOVA, P > 0.05, n = 5–17 clones)

Period in proliferation
medium

Node position (1 = cotyledonary; 5 or 6 = apical)
1 2 3 4 5 6

L. polygalifolium
7 weeks 20 ± 10 7 ± 4 14 ± 9 16 ± 9 10 ± 6 23 ± 7
15 weeks 67 ± 21 47 ± 20 40 ± 22 40 ± 22 25 ± 16 27 ± 16
23 weeks 20 ± 7 23 ± 12 32 ± 17 24 ± 13 17 ± 7 8 ± 4

L. scoparium
7 weeks 16 ± 4 14 ± 3 28 ± 5 29 ± 7 19 ± 5 –

15 weeks 48 ± 13 26 ± 10 26 ± 9 38 ± 11 36 ± 13 –

23 weeks 24 ± 8 23 ± 6 20 ± 6 31 ± 8 29 ± 11 –
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medium often produced extensive callus and multiple short
shoots, without forming roots. Similar callogenesis has been
observed in cultures of C. torelliana � C. citriodora with the
same BA dose (Trueman and Richardson 2007; Hung and
Trueman 2010, 2011, 2012). Shoot formation appeared to
occur through a combination of axillary shoot production,
callogenesis and shoot regeneration, as it does in C. torelliana
� C. citriodora (Trueman and Richardson 2007; Hung and
Trueman 2010). The relative contributions of axillary shoots
and adventitious shoots to total shoot proliferation are difficult to
ascertain, especially because many Myrtaceae species have
multiple axillary and accessory buds within each leaf axil
(Burrows et al. 2008; Burrows 2013). Histological
examination would be required to determine the cellular
origin of the multiple shoots produced in the presence of BA
(Dobrowolska et al. 2017; Trueman et al. 2018). The possibility
that many of the shoots are formed via an intervening callus
phase may explain the very high shoot proliferation in
some clones. However, it also means that this method has
the potential to release or induce somaclonal variation (George
1993; Tibok et al. 1995; Mo et al. 2009). This might not be a
concern in a vegetative family propagation program that
establishes nursery stock populations and plantations with a
large and diverse range of juvenile clones.

Shoots of both L. polygalifolium and L. scoparium were
converted successfully into plantlets and acclimatised to
nursery conditions. Rooting and acclimatisation success
were similar among shoots that had been produced along
the hormone-free node-culture pathway and the BA-induced
callogenic pathway, noting, though, that shoots from the latter
pathway were maintained in the absence of BA for 5 weeks
before root induction. The percentages of shoots that
formed roots and acclimatised successfully were somewhat
low (30–31% for L. polygalifolium and 29–44% for
L. scoparium), and these percentages could not be increased
using IBA doses that stimulate adventitious rooting in eucalypt
shoots (Trueman et al. 2018) and in shoots of L. scoparium �
L. rotundifolium backcrossed to L. rotundifolium (Seelye et al.
2001). Fortunately, the nursery stock plants formed from
the L. polygalifolium and L. scoparium plantlets have very
high capacity for rooted-cutting production (Darby et al.
2021). The stock plants produce shoots prolifically and the
cuttings from these shoots have very high capacity for

adventitious rooting. Rooting percentages of L. polygalifolium
and L. scoparium cuttings are 88–93 and 65–76% respectively,
which would be considered high for most eucalypt species
(Trueman et al. 2017; Darby et al. 2021). These rooting
percentages are also higher than, or similar to, the 70%
threshold that is required by many commercial nurseries
(Trueman 2006; Hunt et al. 2011; Rigby and Trueman 2015).

No evidence was found of topophysic effects on in-vitro
rooting, shoot proliferation or ex vitro acclimatisation
of L. polygalifolium or L. scoparium shoots. The first
(cotyledonary) node and the second node have higher
rooting, shoot elongation and shoot proliferation capacity
than more apical nodes in hormone-free node cultures of
C. torelliana � C. citriodora (Hung and Trueman 2011).
Such topophysic effects are not evident in BA-induced
callogenic cultures, where rooting and extensive shoot
elongation do not occur. These topophysic effects in
C. torelliana � C. citriodora cultures allow the separation
of different seedling nodes into different propagation pathways
to optimise shoot proliferation, clonal archiving and field
testing. The current results indicate that the first five or six
nodes of L. polygalifolium or L. scoparium have similar
proliferation and acclimatisation capacity. Therefore,
separation of explants on the basis of node position would
not be beneficial unless subsequent maturation effects on plant
performance, associated with higher node positions, became
evident in the nursery or plantation (Aimers-Halliday and
Burdon 2003; Mitchell et al. 2004; Trueman 2006;
Wendling et al. 2014a, 2014b).

In conclusion, L. polygalifolium and L. scoparium have
high capacity for mass propagation in a simple node-culture
system that does not employ BA and does not induce callus
formation. One of these species, L. polygalifolium, also has
high capacity for micropropagation in a callogenic-culture
system that uses a low dose of BA (i.e. 2.22 mM). Shoots
from both systems can be converted into plantlets and
acclimatised to nursery conditions. These plantlets have
been found to have excellent capacity as nursery stock
plants for rooted-cutting production (Darby et al. 2021).
These results demonstrate that L. polygalifolium and
L. scoparium can be propagated rapidly to establish
high-value nectar plantations for therapeutic-honey
production.

Table 2. Influence of the original seedling node position on the percentage of Leptospermum polygalifolium
and L. scoparium shoots that formed roots in hormone-free medium and had survived after 8 weeks in the

laboratory and 8 weeks acclimatising in the glasshouse
Means (�s.e.) within a species and proliferation medium do not differ significantly (random block ANOVA, P > 0.05,

n = 3–12 clones)

[Benzyladenine] in proliferation
medium

Node position (1 = cotyledonary; 5 or 6 = apical)
1 2 3 4 5 6

L. polygalifolium
0.00 mM 33 ± 9 32 ± 16 61 ± 16 30 ± 12 33 ± 15 61 ± 15
2.22 mM – 21 ± 10 16 ± 10 52 ± 22 29 ± 12 40 ± 25

L. scoparium
0.00 mM 20 ± 8 46 ± 13 42 ± 13 50 ± 12 38 ± 12 –

2.22 mM 17 ± 8 50 ± 22 54 ± 27 46 ± 18 41 ± 21 –
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Handling editor: Olusegun Osunkoya

Micropropagation of Leptospermum Australian Journal of Botany 317

www.publish.csiro.au/journals/ajb

dx.doi.org/10.1080/00049158.1994.10676130
dx.doi.org/10.1080/00049158.2015.1073211
dx.doi.org/10.1371/journal.pone.0167006
dx.doi.org/10.17660/ActaHortic.2015.1097.27
dx.doi.org/10.1016/j.lwt.2020.110311
dx.doi.org/10.1080/01140671.2001.9514184
dx.doi.org/10.1007/BF00269705
dx.doi.org/10.1016/0168-9452(95)04188-Z
dx.doi.org/10.2989/10295920609505261
dx.doi.org/10.1071/BT06163
dx.doi.org/10.1007/s11056-012-9315-y
dx.doi.org/10.4067/S0718-95162013005000077
dx.doi.org/10.1071/BT14060
dx.doi.org/10.1016/j.ufug.2017.08.009
dx.doi.org/10.3390/f9020084
dx.doi.org/10.1007/s11056-014-9421-0
dx.doi.org/10.1007/s11056-014-9415-y
dx.doi.org/10.1007/s11056-014-9451-7
dx.doi.org/10.1021/acs.jafc.8b04363

