Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Dormancy is modulated by seed structures in palms of the cerrado biome

V. S. Carvalho A , L. M. Ribeiro A C , P. S. N. Lopes B , C. O. Agostinho A , L. J. Matias A , M. O. Mercadante-Simões A and L. N. F. Correia A
+ Author Affiliations
- Author Affiliations

A Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais 39401-089, Brazil.

B Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais 39404-547, Brazil.

C Corresponding author. Email: leomrib@hotmail.com

Australian Journal of Botany 63(5) 444-454 https://doi.org/10.1071/BT14224
Submitted: 5 September 2014  Accepted: 16 April 2015   Published: 22 May 2015

Abstract

The aim of the present study was to evaluate the influence of the seed structures on the dormancy of the palms Attalea vitrivir Zona, Butia capitata (Mart.) Becc. and Acrocomia aculeata (Jacq.) Lodd. ex Mart., which are found in the cerrado biome (Brazilian savanna). The effects of seed structures on the imbibition and effects of the operculum on germination were evaluated. The effects of the collection area on the seed biometric characteristics and influence of the embryo mass and length on their germination capacity and vigour were also evaluated. The operculum was anatomically characterised, and the effects of the operculum thickness on seed germination were evaluated. The seed structures partially restricted water absorption by the embryos, but this did not affect germination; however, removing the operculum promoted germination. The mass of A. vitrivir and A. aculeata embryos positively influenced their germination capacity and vigour, and the thicknesses of the opercular seed coat and operculum negatively controlled the germination capacity of B. capitata. The greater thickness and rigidity of the operculum of A. aculeata increased the intensity of seed dormancy and possibly contributed to the wider distribution pattern of this species. The interaction between the embryo and operculum structures modulate the dormancy and possibly influence the distribution patterns of the palms in the cerrado biome.

Additional keywords: Arecaceae, embryo, operculum, seed coat.


References

Baskin CC, Baskin JM (2004) A classification system for seed dormancy. Seed Science Research 14, 1–16.
A classification system for seed dormancy.Crossref | GoogleScholarGoogle Scholar |

Baskin CC, Baskin JM (2014a) What kind of seed dormancy might palms have? Seed Science Research 24, 17–22.
What kind of seed dormancy might palms have?Crossref | GoogleScholarGoogle Scholar |

Baskin CC, Baskin JM (2014b). ‘Seeds: ecology, biogeography and evolution of dormancy and germination.’ (Academic Press: San Diego, CA)

Benech-Arnold RL, Gualano N, Leymarie J, Côme D, Corbineau F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. Journal of Experimental Botany 57, 1423–1430.
Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFSktL8%3D&md5=91eb1f8f2b0b53af9d300df0db04da3fCAS | 16547124PubMed |

Berton LHC, Azevedo Filho JA, Siqueira WJ, Colombo CA (2013) Seed germination and estimates of genetic parameters of promising macaw palm (Acrocomia aculeata) progenies for biofuel production. Industrial Crops and Products 51, 258–266.
Seed germination and estimates of genetic parameters of promising macaw palm (Acrocomia aculeata) progenies for biofuel production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVagsrvL&md5=2859e451f6546d299dca72365a277483CAS |

Bewley JD (1997) Seed germination and dormancy. The Plant Cell 9, 1055–1066.
Seed germination and dormancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1ShtLs%3D&md5=ff2581ebc1d7afb31e562e400a34d367CAS | 12237375PubMed |

Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) ‘Seeds: physiology of development, germination and dormancy.’ (Springer: New York)

Brasil (2009) ‘Regras para análise de sementes.’ (Ministério da Agricultura, Pecuária e Abastecimento Mapa/ACS: Brasília, Brazil)

Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiology 154, 1017–1023.
Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2nsbfN&md5=44b3aeba298e6904146b09c782eab49aCAS | 20855518PubMed |

Debeaujon I, Kloosterziel KML, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122, 403–414.
Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFCjtL0%3D&md5=0ed92c610970b1dc959da1d6a6a19586CAS | 10677433PubMed |

DeMason DA (1983) Structure, composition and physiological state of the endosperm of Phoenix dactylifera L. Annals of Botany 52, 71–80.

DeMason DA (1988) Embryo structure and storage reserve histochemistry in the palm Washingtonia filifera. American Journal of Botany 75, 330–337.
Embryo structure and storage reserve histochemistry in the palm Washingtonia filifera.Crossref | GoogleScholarGoogle Scholar |

Dias DS, Lopes PSN, Ribeiro LM, Oliveira LAA, Mendes EV, Carvalho VS (2013) Effects of seed structures, sucrose and gibberellic acid on the germination of Butia capitata (Arecaceae). Seed Science and Technology 41, 371–382.
Effects of seed structures, sucrose and gibberellic acid on the germination of Butia capitata (Arecaceae).Crossref | GoogleScholarGoogle Scholar |

Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2005) A new phylogenetic classification of the palm family, Arecaceae. Kew Bulletin 60, 559–569.

Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501–523.
Seed dormancy and the control of germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVertbw%3D&md5=c127bad6e7866e70f7e03a872fc61bf4CAS | 16866955PubMed |

Forbis TA, Floyd SK, Queiroz A (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56, 2112–2125.
The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy.Crossref | GoogleScholarGoogle Scholar | 12487343PubMed |

Foster AS (1949) ‘Practical plant anatomy.’ (Van Nostrand: Princeton, NJ)

Gong X, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-b-mannanase activity. Annals of Botany 96, 1165–1173.
The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-b-mannanase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFOruw%3D%3D&md5=70f0c62615edce2ec83714effc1bf34dCAS | 16176942PubMed |

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ (2012) Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35, 1769–1786.
Molecular mechanisms of seed dormancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12itr3K&md5=488fb39748344338bfebec01f3084541CAS |

Hiane PA, Ramos Filho MM, Ramos MIL, Macedo MLR (2005) Bocaiúva, Acrocomia aculeata (Jacq.) Lodd., pulp and kernel oils: characterization and fatty acid composition. Brazilian Journal of Food Technology 8, 256–259.

Hussey G (1958) An analysis of the factors controlling the germination of the seed of the oil palm, Elaeis guineensis (Jacq.). Annals of Botany 22, 259–286.

Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill Boo Company: New York)

Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2007) ‘Plant systematics: a phylogenetic approach.’ (Sinauer Associates Publishers: Sunderland, MA)

Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology 27, 137–138.

Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytologist 186, 817–831.
The evolution of seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWhtb8%3D&md5=9c283880fc81bdb57aaa2eb24e1d93aeCAS | 20406407PubMed |

Lorenzi H, Noblick LR, Kahn F, Ferreira E (2010) ‘Flora Brasileira Lorenzi: Arecaceae (Palmeiras).’ (Plantarum: Nova Odessa, Brazil)

Magalhães HM, Lopes PSN, Ribeiro LM, Sant’Anna-Santos BF, Oliveira DMT (2013) Structure of the zygotic embryos and seedlings of Butia capitata (Arecaceae). Trees 27, 273–283.
Structure of the zygotic embryos and seedlings of Butia capitata (Arecaceae).Crossref | GoogleScholarGoogle Scholar |

Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Simões MO, Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29, 199–214.
Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVentLbK&md5=7319b71624d8efb50b329e7c314e8e5aCAS |

Motta PEF, Curi N, Oliveira-Filho AT, Gomes JBV (2001) Ocorrência da macaúba em Minas Gerais: relação com atributos climáticos, pedológicos e vegetacionais. Pesquisa Agropecuaria Brasileira 7, 1023–1031.

Moura EF, Ventrella MC, Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67, 399–407.
Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae).Crossref | GoogleScholarGoogle Scholar |

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
A revised medium for rapid growth and bio assays with tobacco tissue cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksFKm&md5=a7c4bf18a54efeed465110561f9996cfCAS |

Neves SC, Ribeiro LM, Cunha IRG, Pimenta MAS, Mercadante-Simões MO, Lopes PSN (2013) Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir). Flora 208, 68–78.
Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir).Crossref | GoogleScholarGoogle Scholar |

Nonogaki H, Bassel GW, Bewley JD (2010) Germination – still a mystery. Plant Science 179, 574–581.
Germination – still a mystery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKht7jP&md5=89786142db67223a3a8ed3b42ca42eeeCAS |

O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368–373.
Polychromatic staining of plant cell walls by toluidine blue O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXmtVOmsw%3D%3D&md5=6a7700b0747b1cdac801359b92d4f476CAS |

O’Brien TP, McCully ME (1981) ‘The study of plant structure principles and select methods.’ (Termarcarphi: Melbourne)

Oliveira NCC, Lopes PSN, Ribeiro LM, Mercadante-Simões MO, Oliveira LAA, Silvério FO (2013) Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae). Trees 27, 1633–1645.
Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae).Crossref | GoogleScholarGoogle Scholar |

Orozco-Segovia A, Batis AI, Rojas-Are’chiga M, Mendoza A (2003) Seed biology of palms: a review. Palms 47, 79–94.

Paiva EAS, Pinho SZ, Oliveira DMT (2011) Large plant samples: how to process for GMA embedding? In ‘Light microscopy: methods and protocols’. (Eds H Chiarini-Garcia, RCN Melo) pp. 37–49. (Humana Press: Totowa, NJ)

Panza V, Láinez V, Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Botanical Journal of the Linnean Society 145, 445–453.
Seed structure and histochemistry in the palm Euterpe edulis.Crossref | GoogleScholarGoogle Scholar |

Pérez HE, Criley RA, Baskin CC (2008) Promoting germination in dormant seeds of Pritchardia remota (Kuntze) Beck., an endangered palm endemic to Hawaii. Natural Areas Journal 28, 251–260.
Promoting germination in dormant seeds of Pritchardia remota (Kuntze) Beck., an endangered palm endemic to Hawaii.Crossref | GoogleScholarGoogle Scholar |

Pires TP, Souza ES, Kuki KN, Motoike SY (2013) Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Industrial Crops and Products 44, 200–210.
Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCmtro%3D&md5=3cf8f0b9d809e55a7ff1ecfe310d6931CAS |

Ribeiro LM, Garcia QS, Oliveira DMT, Neves SC (2010) Critérios para o teste de tetrazólio na estimativa do potencial germinativo em macaúba. Pesquisa Agropecuaria Brasileira 45, 361–368.
Critérios para o teste de tetrazólio na estimativa do potencial germinativo em macaúba.Crossref | GoogleScholarGoogle Scholar |

Ribeiro LM, Souza PP, Rodrigues AG, Oliveira TGS, Garcia QS (2011) Overcoming dormancy in macaw palm diaspores, a tropical species with potential for use as bio-fuel. Seed Science and Technology 39, 303–317.
Overcoming dormancy in macaw palm diaspores, a tropical species with potential for use as bio-fuel.Crossref | GoogleScholarGoogle Scholar |

Ribeiro LM, Oliveira DMT, Garcia QS (2012a) Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae) during in vitro germination. Trees 26, 851–863.
Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae) during in vitro germination.Crossref | GoogleScholarGoogle Scholar |

Ribeiro LM, Oliveira TGS, Carvalho VS, Silva PO, Neves SC, Garcia QS (2012b) The behaviour of macaw palm (Acrocomia aculeata) seeds during storage. Seed Science and Technology 40, 344–353.
The behaviour of macaw palm (Acrocomia aculeata) seeds during storage.Crossref | GoogleScholarGoogle Scholar |

Ribeiro LM, Garcia QS, Müller M, Munné-Bosch S (2015) Tissue-specific hormonal profiling during dormancy release in macaw palm seeds. Physiologia Plantarum 153, 627–642.
Tissue-specific hormonal profiling during dormancy release in macaw palm seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsFyms7Y%3D&md5=9f830ad42d354a18c20bf7a869927040CAS | 25174374PubMed |

Roberto GG, Habermann G (2010) Morphological and physiological responses of the recalcitrant Euterpe edulis seeds to light, temperature and gibberellins. Seed Science and Technology 38, 367–378.
Morphological and physiological responses of the recalcitrant Euterpe edulis seeds to light, temperature and gibberellins.Crossref | GoogleScholarGoogle Scholar |

Rosental L, Nonogaki H, Fait A (2014) Activation and regulation of primary metabolism during seed germination. Seed Science Research 24, 1–15.
Activation and regulation of primary metabolism during seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisV2qsLk%3D&md5=91d9234780300ce19460896ff114f134CAS |

Silva RS, Ribeiro LM, Mercadante-Simões MO, Nunes YRF, Lopes PSN (2014) Seed structure and germination in buriti (Mauritia flexuosa) – the swamp palm. Flora 209, 674–685.
Seed structure and germination in buriti (Mauritia flexuosa) – the swamp palm.Crossref | GoogleScholarGoogle Scholar |

Teixeira AM (2008) Babassu. A new approach for an ancient Brazilian biomass. Biomass and Bioenergy 32, 857–864.
Babassu. A new approach for an ancient Brazilian biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Wgsb4%3D&md5=ee2c91db725e0475163f2664ab9f9b0cCAS |

Vidal BC (1977) Acid glycosaminoglycans and endochondral ossification: microespectrophotometric evaluation and macromolecular orientation. Cellular & Molecular Biology Letters 22, 45–64.