Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Vitrification-based shoot tip cryopreservation of Carica papaya and a wild relative Vasconcellea pubescens

Sarah E. Ashmore A B , Roderick A. Drew A and Mahmoud Azimi A
+ Author Affiliations
- Author Affiliations

A Centre for Forestry and Horticultural Research (CFHR), Griffith University, Nathan, Qld 4111, Australia.

B Corresponding author. Email: S.Ashmore@griffith.edu.au

Australian Journal of Botany 55(5) 541-547 https://doi.org/10.1071/BT06144
Submitted: 5 July 2006  Accepted: 27 February 2007   Published: 17 August 2007

Abstract

This paper reports on the effects of pre- and post-liquid nitrogen modifications to a previously published protocol for vitrification-based cryopreservation of papaya (Carica papaya L.) shoot tips. The aim was to improve the protocol for application across a wider range of papaya genotypes. Results showed that recovery from cryopreservation is genotype dependent, but the post-subculture age of the shoot tips was not significant in the two genotypes tested. Pre-culture for 2 days gave greater recovery than that for 0, 1 or 4 days. The duration and temperature of exposure to plant vitrification solution 2 (PVS2) had the most significant impact, with optimal recovery of 60 and 64% with 10 min at room temperature or 20 min at 0°C, respectively. Exposure to PVS2 for greater than 30 min reduced recovery to below 20%. Post-cryopreservation recovery was highest in media containing 1.0 µm 6-benzylaminopurine (BAP) or a combination of BAP and gibberellic acid (GA3) (1.0 and 0.5 µm, respectively). Incubation in the dark for the first 24–48 h had no significant effect on recovery. A refined protocol was developed based on these results and application of this protocol proved to be effective across seven papaya genotypes and one related species, Vasconcellea pubescens V.M.Badillo. Genotypes previously showing no survival on an unrefined protocol recovered using this revised protocol.


Acknowledgements

This work has been partially funded by ACIAR (Australian Centre for International Agricultural Research).


References


Ashmore SE (1997) ‘Status Report on the Development and Application of in vitro Conservation and Use of Plant Genetic Resources.’ (IPGRI: Rome.)

Ashmore SE, Azimi M, Drew RA (2001) Cryopreservation trial in Carica papaya. Acta Horticulturae 560, 117–120. open url image1

Azimi-Tabrizi M, O’Brien C, Ashmore SE, Drew RA (2005) Cryopreservation of Papaya germplasm. Acta Horticulturae 692, 43–50. open url image1

Baek H-J, Kim H-H, Cho E-G, Chae Y-A, Engelmann F (2003) Importance of explant size and origin and of preconditioning treatments for cryopreservation of garlic shoot apices by vitrification. CryoLetters 24, 381–388.
PubMed |
open url image1

Benson EE, Harding K, Smith H (1989) Variation in recovery of cryopreserved shoot tips of Solanum tuberosum exposed to different pre-post-freeze light regimes. CryoLetters 10, 323–344. open url image1

Bouafia S, Jelti N, Lairy G, Blanc A, Bonnel E, Dereuddre J (1996) Cryopreservation of potato shoot tips by encapsulation dehydration. Potato Research 39, 69–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Charoensub R, Phansiri S, Yongmanitchai W, Sakai A (2003) Routine cryopreservation of in vitro-grown axillary apices of cassava (Manihot esculenta Crantz) by vitrification: importance of a simple mononodal culture. Scientia Horticulturae 98, 485–492.
Crossref | GoogleScholarGoogle Scholar | open url image1

DeFossard RA, Myint A, Lee ECM (1974) A broad spectrum tissue culture experiment with tobacco(Nicotiana tobacum L.) with pith tissue cells. Physiologia Plantarum 31, 125–130.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dereuddre J, Fabre J, Bassaglia C (1988) Resistance to freezing to liquid nitrogen of carnation (Dianthus caryophyllus L.var. EOLO) apical and axillary shoot tips excised from different aged in vitro. Plant Cell Reports 7, 170–173.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dillon S, Ramage C, Drew R, Ashmore S (2005) Genetic mapping of a PRSV-P resistance gene in 'highland papaya' based on inheritance of RAF markers. Euphytica 145, 11–23.
Crossref | GoogleScholarGoogle Scholar | open url image1

Drew RA (1992) Improved techniques for in vitro propagation and germplasm storage of papaya. HortScience 27, 1122–1124. open url image1

Drew RA, Smith NG (1986) Growth of apical and lateral buds of pawpaw (Carica papaya L.) as affected by nutritional and hormonal factors. Journal of Horticultural Science 61, 535–543. open url image1

Engelmann F (1997) In vitro conservation methods. In ‘Biotechnology and plant genetic resources’. (Eds JA Callow, BV Ford-Lloyd, HJ Newbury) pp. 119–161. (CAB International: Oxford.)

Escobar RH, Roca WM, Guevara C (1995) In ‘Biotechnology research unit annual report’. pp. 82–88. (CIAT: Cali, Colombia.)

Escobar RH, Debouck D, Roca WM (2000) Development of cassava cryopreservation. In ‘Cryopreservation of tropical pplant germplasm. Current research progress and application’. (Eds F Engelmann, H Takagi) pp. 222–226. (JIRCAS/IPGRI: Rome)

González-Arnao MT, Ravelo MM, Villavicencio CU, Montero MM, Engelmann F (1998) Cryopreservation of pineapple (Ananas comosus) apices. CryoLetters 19, 375–382. open url image1

Harding K (1991) Molecular stability of ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservation. Euphytica 55, 141–146.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manshardt R, Drew R (1998). Biotechnology of papaya. In ‘Proceedings of international symposium on tropical and subtropical fruits’. (Ed. R Drew). Acta Horticulturae 461, 65–74.

Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Reports 13, 442–446.
Crossref | GoogleScholarGoogle Scholar | open url image1

Matsumoto T, Mochida K, Itamura H, Sakai A (2001) Cryopreservation of persimmon (Deospyros kaki Thunb.) by vitrification of dormant shoot tips. Plant Cell Reports 20, 398–402.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mix-Wagner G, Schumacher HM, Cross RJ (2003) Recovery of potato apices after several years storage in liquid nitrogen CryoLetters 24, 33–41.
PubMed |
open url image1

Niino T, Sakai A, Enomoto S, Magosi J, Kato S (1992) Cryopreservation of in vitro grown shoot tips of mulberry by vitrification. CryoLetters 13, 303–312. open url image1

Normah MN, Tan BS (2000) Cryoexposure of in vitro shoot tips of mangosteen – effects of sucrose and desiccation. In ‘Cryopreservation of tropical plant germplasm. Current research progress and application’. (Eds F Engelmann, H Takagi) pp. 431–433. (JIRCAS: Japan)

Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Science 168, 45–55.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato (Ipomoea batatas L.) by vitrification. Plant Cell Reports 19, 733–737.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reed BM, Denoma J, Luo J, Chang Y, Towill L (1998) Cryopreservation and long-term storage of pear germplasm. In Vitro Cellular & Developmental Biology. Plant 34, 256–260. open url image1

Reed BM (2003) ‘The basics of in vitro sStorage and cryopreservation.’ (National Clonal Germplasm Repository: Corvallis, OR)

Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellus cells of navel orange. Plant Cell Reports 9, 30–33. open url image1

Sant R, Taylor M, Tyagi A (2006) Cryopreservation of in vitro-grown shoot-tips of tropical taro (Colocasia esculenta var. esculanta) by vitrification. CryoLetters 27(3), 133–142.
PubMed |
open url image1

Steel RGD, Torrie JH (1980) ‘Principles and procedures of statistics.’ 2nd edn. (McGraw Hill: New York)

Takagi H, Tien Thinh N, Islam OM, Senboku T (1997) Cryopreservation of in vitro grown shoot tips of taro (Colocasia esculenta L. Schott) by vitrification. I. Investigation of basic conditions of vitrification procedures. Plant Cell Reports 16, 594–599. open url image1

Towill LE (1981) A model for studying the cryobiology of shoot tips in tuber bearing Solanum species. Plant Science Letters 20, 315–324.
Crossref | GoogleScholarGoogle Scholar | open url image1

Turner SR, Senaratna T, Bunn E, Tan B, Dixon KW, Touchell DH (2001a) Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Annals of Botany 87, 371–378.
Crossref | GoogleScholarGoogle Scholar | open url image1

Turner SR, Touchell DH, Senaratna T, Bunn E, Tan B, Dixon KW (2001b) Effects of plant growth regulators on survival and recovery growth following cryopreservation. CryoLetters 22, 163–174.
PubMed |
open url image1

Vandenbussche B, Weyens G, DeProft M (2000) Cryopreservation of in vitro sugar beet (Beta vulgaris L.) shoot tips by vitrification technique. Plant Cell Reports 19, 1064–1068.
Crossref | GoogleScholarGoogle Scholar | open url image1

Volk GM, Harris JL, Ritindo KE (2006) Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology 52, 305–308.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang YL, Fan MJ, Liaw SI (2005) Cryopreservation of in vitro-grown shoot tips of papaya (Carica papaya L.) by vitrification. Botanical Bulletin of Academia Sinica 46(1), 29–34. open url image1

Wu YJ, Engelmann F, Zhao YH, Zhou MD, Chen SY (1999) Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning of donor plants. CryoLetters 20, 121–130. open url image1

Wu YJ, Zhao YH, Engelmann F, Zhou MD, Zhang DM, Chan SY (2001) Cryopreservation of apple dormant buds and shoot tips. CryoLetters 22, 375–380.
PubMed |
open url image1

Yamada T, Sakai A, Matsumura T, Hguchi S (1991) Cryopreservation of apical meristem of white clover (Trifolium repens L.) by vitrification. Plant Science 78, 81–87.
Crossref | GoogleScholarGoogle Scholar | open url image1