Chromosome studies in species of Eugenia, Myrciaria and Plinia (Myrtaceae) from south-eastern Brazil
Itayguara Ribeiro da Costa A C and Eliana Regina Forni-Martins BA Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, Campinas, 13083-970 São Paulo, Brazil.
B Departamento de Botânica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, Campinas, 13083-970 São Paulo, Brazil.
C Corresponding author. Email: itayguara@yahoo.com
Australian Journal of Botany 54(4) 409-415 https://doi.org/10.1071/BT04199
Submitted: 21 December 2004 Accepted: 19 December 2005 Published: 22 June 2006
Abstract
The chromosome numbers of Brazilian species of Myrtaceae were reassessed in the context of chromosomal evolution in fleshy-fruited Myrteae. The chromosome numbers of 14 species of Eugenia, three of Myrciaria and two of Plinia were determined, 14 of which had not been published before. In Eugenia, a diploid state (2n = 22) was found in nine species, polyploid (2n = 33 or 2n = 44) in three species, and both diploid and polyploid cytotypes in another three species. The percentage of Eugenia species with a known chromosome number increased from 19 to 31 species, 22.6% of which were polyploid (3 triploid, 1 tetraploid and 3 hexaploid) and a further 16.1% either dysploid from the triploid level or had both diploid and polyploid races, giving a total of 38.7% in which polyploidy is recorded. In Myrciaria (3 species) and Plinia (2 species), the chromosome number was 2n = 22, with no polyploidy known in these genera. The results reinforce the previous indications that polyploidy is of great importance in the evolution of fleshy-fruited Myrteae.
Acknowledgments
IRC was supported by a scholarship Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and ERFM is the recipient of a research fellowships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This work was supported by FAPESP (Grant no. 01/13169-6). The authors thank C. F. Verola, C. Urbanetz, F. R. Martins, K. F. Rodrigues and R. Macedo for donating the material of some species, M Sobral (UFMG) for indentifying the species, and J. H. Dutilh, K. Yamamoto and C. E. B. Proença for improvements to the manuscript.
Andrade FG, Forni-Martins ER
(1998) Estudos cromossômicos em espécies de Myrtaceae. Genetics and Molecular Biology Suppl. 21, 166–
.
Angiosperm Phylogeny Group (APG)
(2003) An update of angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399–436.
| Crossref | GoogleScholarGoogle Scholar |
Atchinson E
(1947) Chromosome numbers in the Myrtaceae. American Journal of Botany 34, 159–164.
| Crossref |
Bernadello M,
Stiefkens LB, Piovano MA
(1990) Números cromosómicos en dicotiledóneas argentinas. Boletin de la Sociedad Argentina de Botanica 26, 149–157.
Brighton CA, Ferguson IK
(1976) Chromosome counts in the genus Melaleuca (Myrtaceae). Kew Bulletin 31, 27–33.
Candolle AP
(1828) Myrtaceae. Produmus Systematis Naturalis Regni Vegetabilis 3, 207–296.
Carr GD
(1978) Chromosome numbers of Hawaian flowering plants and the significance of cytology in selected taxa. American Journal of Botany 65, 236–242.
| Crossref |
Coleman JR
(1982) Chromosome numbers of angiosperms collected in the state of São Paulo. Revista Brasileira de Genetica 3, 533–549.
Conti E,
Litt A, Sytsma KJ
(1996) Circumscription of Myrtales and their relationships to other rosids: evidence from rbcL sequence data. American Journal of Botany 83, 221–233.
| Crossref |
Conti E,
Litt A,
Wilson PG,
Graham SA,
Briggs BG,
Johnson LAS, Sytsma KJ
(1997) Interfamilial relationships in Myrtales: molecular phylogeny and patterns of morphological evolution. Systematic Botany 22, 629–647.
| Crossref |
Dawson MI
(1987) Contributions to a chromosome atlas of the New Zealand flora—29. Myrtaceae. New Zealand Journal of Botany 25, 367–369.
Delay C
(1947) Recherches sur la structure des noyaux quiescents chez les phanerogams. Revue de Cytologie et de Cytophysiologie Végetales 9, 169–222.
Fernandes A
(1971) Contribution à la connaissance du genre Heteropyxis Harv. Mitteilungen der Botanischen Staatssammlung München 10, 207–234.
Forni-Martins ER, Martins FR
(2000) Chromosome studies on Brazilian cerrado plants. Genetics and Molecular Biology 23, 947–955.
| Crossref | GoogleScholarGoogle Scholar |
Gadek PA,
Wilson PG, Quinn CJ
(1996) Phylogenetic reconstruction in Myrtaceae using matK, with particular reference to the position of Psiloxylon and Heteropyxis. Australian Systematic Botany 9, 283–290.
| Crossref | GoogleScholarGoogle Scholar |
Guerra M
(1983) O uso do Giemsa em citogenética vegetal—comparação entre a coloração simples e o bandamento. Ciencia e Cultura 35, 190–193.
Johnson LAS, Briggs BG
(1984) Myrtales and Myrtaceae—a phylogenetic analysis. Annals of the Missouri Botanical Garden 71, 700–756.
| Crossref |
Landrum LR
(1981) A monograph of the genus Myrceugenia (Myrtaceae). Flora Neotropica 29, 1–137.
Landrum LR, Kawasaki ML
(1997) The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49, 508–536.
| Crossref |
Lucas EJ,
Belsham SR,
NicLughada EM,
Orlovich DA,
Sakuragui CM,
Chase MW, Wilson PG
(2005) Phylogenetic patterns in the fleshy-fruited Myrtaceae—preliminary molecular evidence. Plant Systematics and Evolution 251, 35–51.
| Crossref | GoogleScholarGoogle Scholar |
McVaugh R
(1956) Tropical American Myrtaceae. Notes on generic concepts and descriptions of previously unrecognized species. Fieldiana: Botany 29, 145–228.
McVaugh R
(1968) The tropical American Myrtaceae—an interim report. Taxon 17, 354–418.
| Crossref |
Mehra PN
(1976) IOPB chromosome number reports LIV. Taxon 25, 631–649.
Mehra PN, Khosla PK
(1969) IOPB chromosome number reports XX. Taxon 18, 213–221.
Mehra PN, Khosla PK
(1972) Cytogenetical studies of East Himalayan Hamamelidaceae, Combretaceae and Myrtaceae. Silvae Gene 21, 186–190.
Moussel B
(1965) Contribution à l`étude cytotaxinomique des Myrtacées. Memoirs du Museum National d’Historie, Serie B. Botanique 16, 71–125.
Raven PH
(1975) The bases of angiosperm phylogeny: cytology. Annals of the Missouri Botanical Garden 62, 724–764.
| Crossref |
Roy RP, Jha RP
(1962) Cytological studies in Myrtaceae. Proceedings 49th Indian Science Congress 3, 336–
.
Rye BL
(1979) Chromosome number variation in the Myrtaceae and its taxonomic implications. Australian Journal of Botany 27, 547–573.
| Crossref | GoogleScholarGoogle Scholar |
Sanders RG,
Stuessy TF, Rodríguez R
(1983) Chromosome numbers from the flora of the Juan Fernandez Islands. American Journal of Botany 70, 799–810.
| Crossref |
Sarkar AK,
Datta N,
Chatterjee U, Hazra D
(1982) IOPB Chromosome Number Reports LXXVI. Taxon 31, 574–598.
Singhal VK,
Gill BS, Bir SS
(1980) Chromosome number reports LXVII. Taxon 29, 355–357.
Singhal VK,
Gill BS, Bir SS
(1984) Cytology of cultivated woody species (Polypetalae). Proceedings of the Indian Science Congress Association 71(3-VI), 143–144.
Singhal VK,
Gill BS, Bir SS
(1985) Cytology of woody species. Proceedings of the Indian Academy of Science 94, 607–617.
Sobral M
(1993) Sinopse de Myrciaria (Myrtaceae). Napaea 9, 13–41.
Sytsma KJ,
Litt A,
Zjhra ML,
Pires JC,
Nepokroeff M,
Conti E,
Walker J, Wilson PG
(2004) Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. International Journal of Plant Sciences suppl. 165, S85–S105.
| Crossref | GoogleScholarGoogle Scholar |
Uchiyama H, Koyama T
(1993) Chromosomes of Myrciaria dubia, Myrtaceae. Chromosome Information Service 54, 16–17.
Vijayakumar N, Subramanian D
(1985) Cytotaxonomical studies in South Indian Myrtaceae. Cytologia 50, 513–520.
Wilson PG,
O’Brien MM,
Gadek PA, Quinn CJ
(2001) Myrtaceae revisited: a reassessment of intrafamilial gropus. American Journal of Botany 88, 2013–2025.
Wilson PG,
O’Brien MM,
Heslewood MM, Quinn CJ
(2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
| Crossref | GoogleScholarGoogle Scholar |