High levels of population differentiation in two New Caledonian Scaevola species (Goodeniaceae) and its implications for conservation prioritisation and restoration
Adrien S. Wulff A B D E , Peter M. Hollingsworth C , Marie Piquet A , Antje Ahrends C , Laurent L’Huillier A and Bruno Fogliani A BA Institut Agronomique néo-Calédonien (IAC), Axe II ‘Diversités biologique et fonctionnelle des écosystèmes, BP 73 98890 Païta, New Caledonia.
B Université de la Nouvelle-Calédonie (UNC), Laboratoire Insulaire du Vivant et de l’Environnement (LIVE-EA 4243) B.P. R4, 98851 Nouméa Cedex, New Caledonia.
C Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.
D SoREco-NC, 57, Route de l’Anse Vata, 98800 Nouméa, New Caledonia.
E Corresponding author. Email: soreconc@gmail.com
Australian Journal of Botany 65(2) 140-148 https://doi.org/10.1071/BT16086
Submitted: 28 April 2016 Accepted: 25 January 2017 Published: 10 March 2017
Abstract
Population genetic structure was studied in two Scaevola (Goodeniaceae) species across their ranges in New Caledonia. Scaevola montana is locally common and distributed primarily on ultramafic substrates, and is used for ecological restoration of mining sites. Scaevola coccinea is a narrow endemic restricted to ultramafic soils in a single valley, where intensive mining activity occurs. We compared levels of diversity and differentiation in the two species using nuclear microsatellites, so as to understand the spatial scale at which populations become isolated. We also measured environmental distances among sites as a crude proxy to estimate where adaptive differentiation may occur. Populations of S. montana were sampled over a total distance of ~500 km. In contrast, the total range of S. coccinea is 12 × 6 km. Greater allelic diversity and gene diversity was detected within populations of S. montana than S. coccinea. Both species show high levels of population differentiation (S. montana FʹST = 0.437; S. coccinea FʹST = 0.54). The marked population structure in S. coccinea despite the close proximity of the sampled populations is associated with its pollination by territorial birds and no observed seed-dispersal agents, compared with the greater vagility of insect pollination and bird dispersal of S. montana. In S. coccinea, given the high levels of differentiation, we highlight the importance of each individual population for the conservation of intra-specific biodiversity in this species. In S. montana, we used a combination of the genetic data and environmental characteristics of each of the sample sites to outline general guidelines on seed sources for restoration programs.
Additional keywords: breeding system, gene flow, spatial genetic structure, ultramafic.
References
Bénichou P, Le Breton O (1986) Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques. Meteorologie (Paris) 7, 23–34.Carolin RC, Morrison DA, Rajput T (1992) ‘Flora of Australia. Vol. 35. Brunoniaceae, Goodeniaceae.’ (Australian Government Publishing Service: Canberra)
Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621–631.
| Microsatellite null alleles and estimation of population differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtleku7c%3D&md5=cbde50da17485f2c8fab418f1698a865CAS |
Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22, 1–20.
| The ade4 package: implementing the duality diagram for ecologists.Crossref | GoogleScholarGoogle Scholar |
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
| Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=fd5debafaa273b744ca867ae78be603cCAS |
Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1, 47–50.
Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. American Journal of Botany 87, 783–792.
| Patterns of genetic variation in rare and widespread plant congeners.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mngs1Klug%3D%3D&md5=8960b5cfde32b5fd632299adad384f78CAS |
Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes 4, 309–310.
| Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1ChtL4%3D&md5=b4b10789e22e66a4907efa749db9e00dCAS |
GNC (Gouvernement de la Nouvelle-Calédonie) (2012) ‘Georep: modèle numérique de terrain à la résolution de 50 mètres.’ Available at http://www.georep.nc [Verified 1 May 2014]
Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.
| FSTAT (version 1.2): a computer program to calculate F-statistics.Crossref | GoogleScholarGoogle Scholar |
Grass Development Team (2011) ‘Geographic resources analysis support system (GRASS) software.’ Open Source Geospatial Foundation Project. Available at http://grass.osgeo.org [Verified 10 September 2014]
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
| Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |
Howarth DG, Gustafsson MHG, Baum DA, Motley TJ (2003) Phylogenetics of the genus Scaevola (Goodeniaceae): implication for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands. American Journal of Botany 90, 915–923.
| Phylogenetics of the genus Scaevola (Goodeniaceae): implication for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |
IUCN/SSC (2013) ‘Guidelines for reintroductions and other conservation translocations. Version 1.0.’ (IUCN Species Survival Commission: Gland, Switzerland)
Jaffré T (1996) Etude comparative des formations végétales et des flores des roches ultramafiques de Nouvelle-Calédonie et d’autres régions tropicales du monde. In ‘Phytogéographie tropicale: réalités et perspectives’. (Ed. JL Guillaumet) pp. 137–149. (Orstom: Paris)
Jaffré T, Morat P, Veillon J-M, MacKee HS (1987) Changements dans la végétation de la Nouvelle-Calédonie au cours du tertiaire: la végétation et la flore des roches ultrabasiques. Adansonia 4, 365–391.
Jaffré T, Rigault F, Dagostini G, Tinel-Fambart J, Wulff A, Munzinger J (2009) Input of the different vegetation units to the richness and endemicity of the New Caledonian flora. Poster presentation. In ‘The 11th Pacific science intercongress, 2–6 March 2009, Tahiti’ (Pacific Science Association: Honolulu, HI).
Kalinganire A, Harwood CE, Slee MU, Simons AJ (2000) Floral structure, stigma receptivity and pollen viability in relation to protandry and self-incompatibility in Silky Oak (Grevillea robusta A.Cunn.). Annals of Botany 86, 133–148.
| Floral structure, stigma receptivity and pollen viability in relation to protandry and self-incompatibility in Silky Oak (Grevillea robusta A.Cunn.).Crossref | GoogleScholarGoogle Scholar |
Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America 106, 9322–9327.
| A global assessment of endemism and species richness across island and mainland regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1Cgtb0%3D&md5=7f8bcc01f84c955bb8f0f122d6636e00CAS |
Kumar S, Skjæveland Å, Orr RJS, Enger P, Ruden T, Mevik B-H, Burki F, Botnen A, Shalchian-Tabrizi K (2009) AIR: a batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinformatics 10, 357
| AIR: a batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses.Crossref | GoogleScholarGoogle Scholar |
L’Huillier L, Jaffré T, Wulff A (2010) ‘Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration.’ (IAC: Nouméa, New Caledonia)
Maurizot P, Schmitt C, Vendé-Leclerc M (2005) Harmonisation de la couverture cartographique géologique numérique de la Nouvelle-Calédonie, Phase 4. Rapport BRGM RP-54 117-FR
Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60, 2399–2402.
| Using the AMOVA framework to estimate a standardized genetic differentiation measure.Crossref | GoogleScholarGoogle Scholar |
Menges ES (2008) TURNER REVIEW No. 16. Restoration demography and genetics of plants: when is a translocation successful? Australian Journal of Botany 56, 187–196.
| TURNER REVIEW No. 16. Restoration demography and genetics of plants: when is a translocation successful?Crossref | GoogleScholarGoogle Scholar |
Müller I (1990) Goodeniaceae. In ‘Flore de la Nouvelle-Calédonie et Dépendances’. (Eds S Morat, H MacKee) pp. 87–118. (Muséum National: Paris)
Myers N (1988) Threatened biotas: ‘hot spots’ in tropical forests. The Environmentalist 8, 187–208.
| Threatened biotas: ‘hot spots’ in tropical forests.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38ngsFCrsQ%3D%3D&md5=b142ac82766f16ae04f8e370e6462939CAS |
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
| Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=714524c78ac3b71f700b2f775cd1d2ceCAS |
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2012) ‘vegan: community ecology package. R package version 2.0–3.’ Available at http://CRAN.R-project.org/package=vegan [Verified 4 April 2014]
Pascal M, Richer De Forges B, Le Guyader H, Simberloff D (2008) Mining and other threats to the New Caledonia biodiversity hotspot. Conservation Biology 22, 498–499.
| Mining and other threats to the New Caledonia biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Pillon Y, Munzinger J, Amir H, Lebrun M (2010) Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology 98, 1108–1116.
| Ultramafic soils and species sorting in the flora of New Caledonia.Crossref | GoogleScholarGoogle Scholar |
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. R-project website. Available: http://www.R-project.org/ [Verified 3 January 2012]
Ramsey M, Vaughton G (1991) Self-incompatibility, protandry, pollen production and pollen longevity in Banksia menziesii. Australian Journal of Botany 39, 497–504.
| Self-incompatibility, protandry, pollen production and pollen longevity in Banksia menziesii.Crossref | GoogleScholarGoogle Scholar |
Setoguchi H, Osawa TA, Pintaud J-C, Jaffré T, Veillon J-M (1998) Phylogenetic relathionships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85, 1507–1516.
| Phylogenetic relathionships within Araucariaceae based on rbcL gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVSr&md5=d7c7281fe55a9b9150778ea2d833232eCAS |
Swenson U, Munzinger J, Bartish IV (2007) Molecular phylogeny of Planchonella (Sapotaceae) and eight new species from New Caledonia. Taxon 56, 329–354.
Webb CJ (1985) Protandry, pollination, and self-incompatibility in Discaria toumatou. New Zealand Journal of Botany 23, 331–335.
| Protandry, pollination, and self-incompatibility in Discaria toumatou.Crossref | GoogleScholarGoogle Scholar |
Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MBD, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
| Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar |
Wulff A (2012) Plant narrow endemism in a hotspot of biodiversity: global approach on the vascular flora of New Caledonia and comparative analysis within the Scaevola genus. PhD Thesis, University of New Caledonia, Nouméa, New Caledonia.
Wulff A, Hollingsworth PM, Haugstetter J, Piquet M, L’Huillier L, Fogliani B (2012) Ten nuclear microsatellites markers cross-amplifying in Scaevola montana and S. coccinea (Goodeniaceae), a locally common and a narrow endemic plant species of ultramafic scrublands in New Caledonia. Conservation Genetics Resources 4, 725–728.
| Ten nuclear microsatellites markers cross-amplifying in Scaevola montana and S. coccinea (Goodeniaceae), a locally common and a narrow endemic plant species of ultramafic scrublands in New Caledonia.Crossref | GoogleScholarGoogle Scholar |
Wulff AS, Hollingsworth PM, Ahrends A, Jaffré T, Veillon J-M, L’Huillier L,, Fogliani B (2013) Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plant species in New Caledonia. PLoS One 8, e73371
| Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plant species in New Caledonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFeitLfF&md5=bc887ebe5d08756eae291fdb02ee5befCAS |