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Abstract: The spectral line datacubes obtained from the Square Kilometre Array (SKA) and its precursors,

such as the Australian SKA Pathfinder (ASKAP), will be sufficiently large to necessitate automated detection

and parametrisation of sources. Matched filtering is widely acknowledged as the best possible method for the

automated detection of sources. This paper presents the Characterised Noise HI (CNHI) source finder, which

employs a novel implementation of matched filtering. This implementation is optimised for the 3-D nature of

the HI spectral line observations of the planned Wide-field ASKAP Legacy L-band All-sky Blind surveY

(WALLABY). The CNHI source finder also employs a novel sparse representation of 3-D objects, with a high

compression rate, to implement the Lutz one-pass algorithm on datacubes that are too large to process in a

single pass.WALLABYwill use ASKAP’s phenomenal 30 square degree field of view to image,70% of the

sky. It is expected that WALLABY will find 500 000HI galaxies out to z, 0.2.
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1 Introduction

The Wide-field ASKAP Legacy L-band All-sky Blind

surveY (WALLABY1; Koribalski et al. 2009, Koribalski,

B., Staveley-Smith, L. et al., in preparation) is an ambi-

tious project that aims to detect neutral hydrogen to a

redshift of z, 0.26, across ,70% of the sky. It is one of

the two top-ranked projects that will be carried out using

the Australian SKA Pathfinder (ASKAP). WALLABY is

possible because of ASKAP’s unprecedented ,30 sq.

degree field of view, which is achieved using Phased

Array Feeds (PAFs). WALLABY will use all 36 of

ASKAP’s antennae, but due to limitations on computing

resources will only process the inner 30 antennae (with

a maximum baseline of 2 km) to image the sky with a 3000

synthesised beam and produce datacubes with voxels2

that project to ,1000 on the sky. The high spatial resolu-

tion is complemented by an anticipated spectral resolu-

tion of 3.86 km s�1. ASKAP spectral datacubes will

therefore cover a large area of the sky to high resolution,

which results in very large datacubes containing at least

2048� 2048� 16 384 voxels. WALLABY will consist

of ,1200 of these large datacubes. The size and number

of these datacubes renders manual source finding

unfeasible. The performance of the automatic source

finder used byWALLABYwill determine howmany (HI)

galaxies are found by WALLABY.

The majority of source finders in existence use

intensity thresholding to find sources. SEXTRACTOR

(Bertin & Arnouts 1996), SFIND (Hopkins et al. 2002)

and DUCHAMP (Whiting 2008, 2011) are good examples of

source finders based on intensity thresholding. Concep-

tually, intensity-threshold source finders check every

pixel (voxel) in an image (datacube) to see if the pixel

(voxel) value is sufficiently extreme that it’s unlikely to

be noise. Once all of the source pixels (voxels) have been

identified, they are combined into objects. The various

intensity threshold source finders differ in how they

estimate the noise, set a threshold for identifying source

pixels (voxels), pre-process the image (datacube) to

improve the source finder results and themanner in which

they create objects from source pixels (voxels). All

intensity threshold source finders share an inherent

limitation, though.

Consider an arbitrary source in a spectral datacube.

Improved spatial and spectral resolutions result in the

source occupyingmore voxels in the datacube.Dispersing

the source’s signal over more voxels means that it con-

tributes less to the flux value of each voxel that it

occupies. This makes it harder for an intensity threshold

method to detect the source. Using a simple model this

effect is illustrated in Figure 1, where the maximum voxel

S/N of an object with an integrated S/N of 5 is plotted for

various asymmetries. The maximum voxel S/N is

1
Principal investigators: Baerbel Koribalski and Lister Staveley-Smith.

See www.atnf.csiro.au/research/WALLABY for more details
about the survey.
2
Voxels are often referred to as pixels when discussing a single channel

of a datacube. Technically, these ‘pixels’ are still voxels. For this reason

the term voxel is used throughout instead of pixel to aid consistency.
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calculated to be S=Nintegrated � b=
ffiffiffi

n
p

, where b describes

the asymmetry of the object’s flux distribution and n is the

number of voxels.

By overlaying the minimum expected size (in voxels)

of WALLABY sources on Figure 1, we can assess the

impact of this inherent limitation on WALLABY. The

neutral hydrogen detected in emission is warm, which

gives it an intrinsic amount of dispersion. We will assume

that any real WALLABY source extends over at least

3 channels. We will also assume that in every channel,

a source occupies at least 3� 3 voxels for a 3000 synthe-
sised beam and 1000 voxels). Galaxies rarely lie at the

middle of a voxel, though, so a more realistic minimum is

a grid of 4� 4 or 5� 5 voxels in every channel. It is

expected that most galaxies detected by WALLABY will

be unresolved or at most marginally resolved (Duffy, A.,

Meyer, M. & Staveley-Smith, L. 2011, in preparation), so

we also consider a 7� 7 grid of voxels in every channel to

account for marginally resolved, off-centre galaxies.

After multiplying by the minimum number of channels

to obtain the expected minimum size of WALLABY

galaxies in voxels, the minimum size for these different

grids is overlaid in Figure 1. This demonstrates that

off-centre and/or marginally resolved galaxies will be

difficult to detect with a basic implementation of an

intensity-thresholding source finder, unless the flux is

asymmetrically distributed. Figure 1 also illustrates that

this effect is amplified in 3-D datasets such as future

WALLABY datacubes. For example, in a 2-D image the

7� 7 and 5� 5 vertical lines would approximately lie at

the position of the 4� 4 and 3� 3 vertical lines.

This inherent limitation is compounded further by

using a size-based rejection criterion to weed out false

detections. If you only detect a few unconnected voxels,

the source will be flagged as a false positive by a size-

based rejection criterion. Off-centre and/or marginally

resolved galaxies that are detected because of asymmetric

flux distributions aremost likely to be detected in the form

of a few unconnected voxels. This effect will also show up

as an enhanced fracture rate of extended, well-resolved

sources.

The inherent limitation of intensity thresholding–

based source finders can be offset by using more

aggressive intensity thresholds (i.e., lower intensity

thresholds), but this often results in many false (source)

detections. The solution to this problem is to run the

source finder on the datacube multiple times with the

datacube smoothed to a different scale each time. This is

however a very inefficient solution to the problem.

DUCHAMP provides multiple options for dealing with this

inherent limitation: a secondary ‘growth’ threshold,

smoothing and a 3-dimensional wavelet reconstruction

of the dataset.

As part of its design study, WALLABY has investi-

gated novel methods of source detection as an alternative

to multiple passes of an intensity threshold source finder.

The goal of this investigation was to develop source

detection methods that are optimised for large datacubes

with high spatial and spectral resolution. The Charac-

terised Noise HI (CNHI) source finder that I present here is

one of the novel source detection methods that have been

developed.

The rest of the paper is structured as follows. The

conceptual framework for the CNHI source finder is

presented in Section 2. The inherent limitations of the

CNHI source finder are then discussed in Section 3. Next,

the current implementation of the CNHI source finder is

presented in Section 4. Finally, some example results are

discussed in Section 5 before finishing with a summary.

2 Conceptual Framework

The CNHI source finder is based on three concepts. The

first concept is thatWALLABY spectral datacubes can be

treated as bundles of HI spectra, rather than collections of

voxels. The next concept is that contiguous blocks of

voxels should be tested to see if they’re a source, rather

than individual voxels. The final concept is that a ‘source’

is detected by looking for a region in a datacube that

doesn’t look like noise. This is the inverse of most source

finders, which identify sources based on some idea of

what a source looks like. In the rest of this section these

concepts are explained in detail.

The first part of the CNHI source finder conceptual

framework is treating a WALLABY spectral datacube

as a bundle of HI spectra, which is akin to Integral Field

Unit (IFU) observations. Each position on the sky has its

own spectrum. However, each spectrum in this datacube

is correlated to some degree with the neighbouring

spectra. The ASKAP beam will determine the degree of

Figure 1 Themaximum voxel S/N of an object (with an integrated

S/N¼ 5) plotted against the number of voxels comprising the

object, n. The various lines correspond to different asymmetries in

the distribution of the voxel’s flux over the n voxels. The vertical

lines (labelled) denote theminimum size of a point source extending

over three channels and occupying 3� 3, 4� 4, 5� 5 or 7� 7

voxels in every channel.
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correlation between each spectrum and its neighbouring

spectra. As explained later the correlation between

spectra should not be a problem for the CNHI source finder.

This conceptual view of a WALLABY datacube is very

amenable to parallelisation.

The second component of the CNHI source finder

conceptual framework is to test contiguous blocks of

voxels instead of individual voxels. This concept is

designed to take advantage of WALLABY datacubes

having sufficiently high velocity resolution to reasonably

resolve most galaxies in frequency. As discussed above,

high resolution data is problematic for source finding

methods that analyse individual voxels. The high resolu-

tion is, however, advantageous when testing contiguous

blocks of voxels. A single voxel with a flux value that is

one standard deviation above the mean is not significant.

Ten contiguous voxels that are all one standard deviation

above the mean are, because it’s improbable that this will

happen by chance in a spectrum with negligible correla-

tion. If we can test whether a contiguous block of voxels in

a spectrum is likely to be source, then we are searching for

sources in a way that benefits from the high velocity

resolution of WALLABY datacubes.

Testing whether contiguous blocks of voxels are

sources provides additional information compared to

testing individual voxels. It is a reasonable expectation

that the test region that best fits the position and velocity

width of a source in a given HI spectrum is the most

significant test region. If the test region is too small, then it

should be less significant than a larger region that is also

made up of source voxels. If the test region is too large,

then the test region contains both source and pure noise

voxels, which should result in a less-significant test

region. Identifying the position and width that results in

the most significant test region therefore provides an

estimate of the source position and velocity width.

The final concept of the CNHI source finder is to find

sources by looking for regions in a WALLABY datacube

that do not look like noise. Looking for regions that do not

look like noise is a novel way to implement matched

filtering. Rather than using many, many filters that each

describe a different type of source, we can use a single

filter that looks like noise. This works because we can

safely assume that the presence of a source is what causes

a contiguous region in our datacube to not look like noise.

The key is to use the noise distribution as the filter,

because it is relatively stable, even though individual

realisations of the noise vary.

How do we use the noise distribution as a filter to look

for regions that aren’t pure noise? Due to the large size

and high resolution of WALLABY datacubes they are

expected to be sparsely populated by sources. This means

that an arbitrary HI spectrum will be dominated by

noise. If we select a test region of contiguous voxels,

then we can use the rest of the HI spectrum as an example

of noise. A comparative statistical test such as the

Kolmogorov–Smirnov test (Kendall & Stuart 1979) can

then determine the probability that the test region and the

rest of the spectrum,which is noise dominated, come from

the same distribution of voxel fluxes. In other words,

using a comparative statistical test we can identify

whether a test region looks like noise. This implementa-

tion can easily be adapted to 2-D images and spectra.

The CNHI source finder uses the Kuiper test (Kuiper

1960) to compare the voxel flux distribution of a test

region to the rest of the spectrum, and identify regions

with non-noise voxel flux distributions. The Kuiper test is

a variant of the Kolmogorov–Smirnov test that is cycli-

cally invariant. The Kolmogorov–Smirnov test is most

sensitive to differences in the distributions about the

medians of the distributions. The Kuiper test by contrast

is equally sensitive to differences in the two distributions

throughout their entire range.

3 Inherent Limitations

There are two inherent limitations of the CNHI source

finder. These limitations are tied to the conceptual

framework. The first limitation is that the comparison of

the test region with the rest of the HI spectrum relies on a

noise-dominated HI spectrum. The other limitation is that

a test region needs to be sufficiently large for the Kuiper

test to produce reliable results.

The use of the Kuiper test to determine whether a

region in an HI spectrum is noise-like is predicated upon

the assumption that the voxel flux values of the rest of the

HI spectrum are noise. It is expected that the assumption

of noise-dominated HI spectra is valid for properly cali-

brated, flagged and continuum-subtracted WALLABY

datacubes with no significant baseline structure. To illus-

trate the sparsity of WALLABY datacubes, a typical

WALLABY datacube is only 0.6% source (measured in

voxels), if 500 000 sources distributed across 1200 data-

cubes have a typical size of 1 000 000 voxels.

For datacubes that are not well behaved or sufficiently

sparse (e.g., baseline structure or failed bandpass calibra-

tion), this can be dealt with by comparing a test region in

an HI spectrum to the subset of the remaining HI spectrum

in its immediate vicinity. The Kuiper test will be less

sensitive, but this is offset by making a valid statistical

comparison. Fourier analysis, polynomial fitting and

existing baseline structure–removal techniques (such as

those implemented in DUCHAMP) can also be used in

combination with this approach, or as an alternative.

The validity of a Kuiper test is described by the

Q parameter. For two samples containing n1 and n2
values, the Q parameter is n1� n2/(n1þ n2). This is the

same Q parameter that describes the validity of the

Kolmogorov–Smirnov test. For both the Kuiper and

Kolmogorov–Smirnov tests it is accepted that the test

results are valid for Q$ 4. The test region in an HI

spectrum needs to be sufficiently large to satisfy Q$ 4,

otherwise the Kuiper test results are increasingly spurious

for increasingly smaller test regions. Setting n¼ n1þ n2,

Q¼ 4 and letting m be the minimum size of a test region,

thenwe can solve form. Theminimum size of a test region

is m ¼ ðn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 16n
p

Þ=2.
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For aWALLABY datacube the minimum size of a test

region is 4 channels. This matches the minimum expected

channel width of WALLABY HI galaxies. The use of the

CNHI source finder on other datacubes needs to consider

the minimum size of a test region. For reference the

minimum test region size is 4 channels for n$ 40, and

the Kuiper test cannot achieve Q$ 4 for n# 15.

4 Current Implementation

The current implementation of the CNHI source finder

works in the following manner. A user calls the CNHI

source finder from the command line with a list of input

parameters. The software then figures out how many

chunks to split the input file into, such that each chunk is at

most 1GB in size. For each chunk, the software creates a

bundled HI spectrum for each position on the sky and uses

the Kuiper test to find object sections in the bundled

spectrum. Once all of the bundled HI spectra have been

searched for object sections, the software creates objects

out of them using a variant of the Lutz one-pass algorithm

(Lutz 1980). The list of objects, their properties and

postage-stamp images are external to the chunks and new

objects are added as each chunk is processed. Once all of

the chunks have been processed, the final list of objects is

tested against the user-specified rejection criterion. The

objects that remain are then output to a catalogue, added

to global moment 0 and position–velocity plots and

postage-stamp images (including integrated spectra)

generated. A flow diagram of the current implementation

is presented in Figure 2. The following subsections pro-

vide more detail about the CNHI input and output, the

bundling of multiple HI spectra, finding object sections in

Figure 2 The algorithm describing the current implementation of the CNHI source finder is shown here as a flow diagram.
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a bundled HI spectrum and the creation of objects from

object sections.

4.1 Inputs and Outputs

User input consists of the following parameters:

1. Output code: The output catalogue and plots are

created with names of OutputCode_obj.cat,

OutputCode_plots and OutputCode_spectra.

2. File name: The path to and name of the .fits file that

CNHI will search for sources.

3. Pre-threshold: The probability threshold used to iden-

tify interesting regions that are likely to contain a

source.3 (Dimensionless quantity.)

4. Threshold: The probability threshold used to identify

sources within interesting regions.3 (Dimensionless

quantity.)

5. Minimum bounding box (3 values): The size criterion

applied to an object’s bounding box if it is to be

retained.

6. Bounding box filling factor: An object composed of

fewer voxels than the minimum bounding box multi-

plied by the filling factor is rejected.

7. Pseudo total intensity threshold: Objects with a pseudo

total intensity less than this threshold are rejected.

8. Merging distances (3 values): Objects which are sepa-

rated by this many voxels or fewer in any dimension

are merged into a single object.

9. Maximum scale: The maximum size of a test region in

an HI spectrum. Specified in number of channels.

The CNHI source finder output consists of a catalogue,

a global moment 0 map, a global position–velocity

diagram for both RA and Dec, and postage-stamp images

of each object (including an integrated spectrum). The

CNHI source finder catalogue contains the following infor-

mation for each object:

1. ID: A numerical ID assigned to each object.

2. Voxel count: The number of voxels that constitute the

source.

3. Pixel RA: The mean RA of the object’s voxels.

4. Pixel Dec: The mean Dec of the object’s voxels.

5. Pixel channel: The mean channel of the object’s

voxels.

6. Intensity RA: The flux-weighted mean RA of the

object’s voxels.

7. Intensity Dec: The flux-weighted mean Dec of the

object’s voxels.

8. Intensity channel: The flux-weighted mean channel of

the object’s voxels.

9. Voxel limits (6 values): The minimum and maximum

RA, Dec and channel of the object.

10. Voxel flux statistics (5 values): The sum, mean,

minimum, maximum and standard deviation of the

object’s voxel flux values.

11. Two sets of W20 and W50 measurements.

12. Sparse representation: A sequence of values that

describes a sparse representation of the object’s 3-D

bit mask in the datacube’s voxel co-ordinates.

The W20 and W50 measurements are measured in two

ways. The first set ofW20 andW50 measurements uses the

same method as DUCHAMP. First, the global maximum of

the object’s integrated spectrum is determined. Next,

starting from each end of the integrated spectrum the first

channels with a flux greater than or equal to 20% and 50%

of the maximum are identified and used to measure W20

and W50. The second set of width measurements was

developed as part of the source finder framework that is

used to implement CNHI. First, the total flux of the

integrated spectrum is measured. The cumulative

frequency distribution (cfd) of the total flux is then

constructed as a function of channel number for the

integrated spectrum. The inner 92.7% and 76.1%, which

correspond to the conventionalW20 &W50 for a Gaussian

profile, are then used to determine W20 and W50. The cfd

will oscillate at the edges of the integrated spectrum

because of noise. For this reason the ‘inner’ values are

defined (starting from the left edge of the integrated

spectrum) to start at the channels where the cfd never again

dips below 0.0364 (W20) and 0.1195 (W50), and ends at the

channels where the cfd first rises above 0.9636 (W20) and

0.8805 (W50). This approach to measuring W20 and W50

has a consistent physical meaning across all possible

spectral profiles and ‘in principle’ averages out noise.

4.2 Creating Bundled HI Spectra

For each HI spectrum the CNHI source finder bundles

together this HI spectrum and the neighbouring HI

spectra. This bundled HI spectrum is searched for objects.

A bundled spectrum is created by weighting the sum of

the HI spectrum and its neighbouring HI spectra using the

point spread function.

Searching for object sections in a bundled spectrum

has two advantages. The first advantage is that it slightly

improves the S/N without blurring the edges of sources in

velocity space or creating correlation in the bundled HI

spectrum. The second, more important advantage is the

improved detection of the outer edges of a source.

Bundling the HI spectra couples the brighter flux in an

object’s inner region to the fainter flux at the edge of the

object. This improves the chance of detecting the fainter

outer regions of the object. The amount of improvement

varies nonlinearly with source morphology, user input

and datacube, so no attempt is made here to predict the

amount of improvement.

4.3 Finding Object Sections

The Kuiper test is used to find object sections within a

bundled HI spectrum. This is implemented as a four-step

process. In the first step, the Kuiper test is used to identify

interesting regions that are likely to contain an object

section. The next step is to reduce the list of interesting

3
Note that a higher value digs deeper into the noise, and is equivalent to

using a lower intensity threshold.
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regions to a unique set. This is achieved by finding all of

the interesting regions that overlap, and only keeping the

most significant interesting region. The most significant

interesting region is judged to be the region with the

lowest probability of being noise according to the Kuiper

test. The purpose of these first two steps is to efficiently

reduce the bundled spectrum to a manageable subset.

Third, the Kuiper test is applied to every position on every

relevant scale to find object sections within these inter-

esting regions. The final step is to reduce the object

sections to a unique set. This is achieved in the same way

that interesting regions are reduced to a unique set.

Interesting regions are found by applying the Kuiper

test to test regions in the bundled HI spectrum and

comparing the result to a user-defined pre-threshold.

Interesting regions are found efficiently by Nyquist

sampling both the scales of interest and positions along

the bundled HI spectrum. Starting with the largest scale of

interest (user-specified) and the beginning of the bundled

HI spectrum, the Kuiper test is applied and then the test

region is advanced half of the scale length. Once the entire

bundled spectrum has been tested on this scale, the scale is

halved and the process is repeated. This is repeated until

the minimum scale has been processed.

Interesting regions narrow down the location and scale

of object sections. Only positions within the interesting

region, and scales ranging from half as small as the

interesting region up to the size of the interesting region,

need to be investigated. If other positions or scales were a

better fit for object sections located within this interesting

region, then this wouldn’t be the most significant inter-

esting region. The Kuiper test is applied to all possible

combinations of position and scale efficiently using a test

region that expands and then shrinks as it moves to

different positions.

4.4 Creating Objects from Object Sections

Once the CNHI source finder has finished finding object

sections in a chunk of the datacube, the object sections are

combined into objects. Objects are created from object

sections using a variant of the Lutz one-pass algorithm.

The essence of the Lutz one-pass algorithm is to raster

scan through an image or datacube, building up the

properties of every object as you go. Lutz’s crucial insight

is that objects are simply connected so they pop out of the

current image or datacube section being scanned (the

scanline). This places a limit on the number of objects that

need to be tracked and updated at any one time. Once the

entire datacube is scanned, the rejection critierion is

applied to the objects. The surviving objects are written to

the output catalogue.

The crucial change to the Lutz one-pass algorithm is

the use of sparse representations of 3-D objects. The use

of sparse representations is what allows the CNHI source

finder to process the datacube in chunks. A new sparse

representation, which consists of three components, was

developed expressly for this purpose. The first component

lists the RA and Dec widths of the object’s bounding box.

The second component lists the number of object sections

that make up the object prior to a given RA, Dec position.

The final component lists the channels that each object

section begins and ends at. The first component indexes

the second component, which then indexes the third

component. The structure of this sparse representation is

illustrated in Figure 3.

The flaw of the Lutz one-pass algorithm is that it

assumes objects are never encountered again after they

‘pop’ out of the scanline. This assumption is quite easily

invalidated when a datacube is too big to process in a

single pass. A crude solution is to split the datacube into

overlapping chunks, process them individually and then

merge the detections within the chunk overlaps. This

approach can easily produce erroneous result, because it

relies on the positions of a source’s segments being

sufficiently close to be merged together. A better method

is to update each chunk’s mask with all of the previously

detected sources before processing them. To do this we

need to be able to efficiently store the binary mask of

every object in a readily accessible format. The sparse

representation of 3-D objects presented here enables the

CNHI source finder to do exactly that. This approach to

processing arbitrarily large datacubes also makes the CNHI

source finder readily amenable to distributed/parallel

computing.

An additional benefit of using the sparse representa-

tions is that the binary mask of every object can be written

to the CNHI output catalogue. Storing an object’s binary

mask allows us to run an arbitrary source parametrisation

tool without having to re-run the source finder to generate

the binary mask.

The CNHI source finder incorporates the sparse repre-

sentation of 3-D objects in the following way. The flag

array, which stores the object sections found in the

Figure 3 An illustration of the novel sparse representation of 3D

objects developed for the CNHI source finder.
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datacube chunk currently being processed, is first updated

for the objects found in previous chunks using their sparse

representations. The CNHI source finder then scans through

the flag array until it finds a voxel that has been flagged as

source. The software then searches through the flag array

to find previously processed objects within the voxel’s

user-specified merging volume. This is a 3-D implemen-

tation of what is referred to as 8-connected linking in 2-D

images. If there aren’t any objects within the merging

volume, then a new object and sparse representation is

created. If a single existing object is found within the

merging volume, then the source voxel is added to it. If

multiple existing objects are found, then the existing

objects are merged into a single object and the source

voxel added to it. In each scenario the flag array is updated

with the object ID of the source that each source voxel

belongs to. When existing objects pass out of the merging

volume of all possible new objects, the user-specified

rejection criterion is applied to these existing objects. This

ensures the minimal number of objects is stored in

memory at any given time. The object IDs of rejected

objects and the memory used to store their properties and

sparse representations are recycled. After the flag array

has been scanned, the sparse representations and postage-

stamp images of the surviving objects are constructed/

updated as required.

5 Example Results

An analysis of the completeness and reliability of the CNHI

source finder, and a comparison of its performance to

other source finders, is presented in Popping et al. (2012).

This paper presents a complementary analysis to that of

Popping et al. (2012), using the same point source (PS)

and extended source (ES) test datacubes (Westmeier

et al. 2012). The terms ‘completeness’, ‘raw

reliability’, ‘refined reliability’, ‘merging rate’ and

‘fragmentation rate’ are defined and measured as in

Popping et al. (2012). As in Popping et al. (2012) and

Westmeier et al. (2012), the analysis presented here

acknowledges the difference between ‘raw reliability’

and ‘refined reliability’, the ‘refined reliability’ being the

reliability that it is possible using post-processing to

remove false detections from a source finder’s output

catalogue. From here on, the term ‘reliability’ will refer to

the raw reliability. Note that the refined reliability has a

corresponding refined completeness, which accounts for

the true detections that are incorrectly flagged as false

detections during post-processing.

During visual inspection of the CNHI source finder

detections in various parameter spaces, it was discovered

that the total intensity versus maximum voxel intensity

(intensity of the source’s brightest voxel) parameter space

is the most efficient parameter space in which to post-

process CNHI detections. For a given object with a given

total intensity, the more compact it is, the brighter the

maximum voxel intensity. For each threshold a simple cut

(a line) in this parameter space was used to post-process

the CNHI detections. The line was adjusted for each

threshold until the refined reliability was greater than

90%. This required minimal effort, and is an example of

the type of post-processing advocated in Serra et al.

(2012).

The completeness, reliability, refined completeness

and refined reliability are plotted in Figures 4 and 5 for

the PS and ES datacubes as a function of threshold. In

Figure 4, the inherent limitation of the CNHI source finder

is taken into account by measuring a ‘corrected complete-

ness’. The corrected completeness is measured by

Figure 4 Completeness (solid line), reliability (dashed line),

corrected completeness (dotted line), refined corrected complete-

ness (circles) and refined reliability (dot-dash line) curves for the PS

datacube.

Figure 5 Completeness (solid line), reliability (dashed line),

refined completeness (dotted line) and refined reliability (dot-dash

line) curves for the ES datacube.
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excluding sources in the PS input catalogue with a full-

width at half-maximum smaller than four channels. This

corrected completeness therefore measures the complete-

ness of the sources that the CNHI is expected to find. The

refined completeness in Figure 4 is that of the corrected

completeness. The inherent limitation of the CNHI is only

taken into account for the PS datacube, because a signifi-

cant fraction of the sources in the PS datacube have

Gaussian profiles with FWHMs that extend over 3 chan-

nels or less. Uncertainties are not provided for the curves

in Figures 4 and 5, because to generate meaningful

uncertainties requires generating many noise realisations.

This is beyond the scope of this paper. It is also irrelevant,

because the performance of the CNHI source finder on the

PS and ES datacubes is not a guarantee or guide to the

performance of the CNHI source finder on other datasets.

As expected, when generating the curves in Figures 4

and 5, the choice of pre-threshold has as much of an

impact on the completeness as the choice of threshold. To

obtain the best completeness the pre-threshold should be

set as high as computer resources and the datacube size

will allow. Note that it was also observed that a pre-

threshold larger than 0.1 or even 0.01 is excessive, and

needlessly computationally expensive. Pre-thresholds

larger than 0.1 or 0.01 are unlikely to improve upon the

number of real sources that are recovered. For this

reason a pre-threshold of 0.01 was used to generate

Figures 4 and 5.

The curves in Figures 4 and 5 illustrate that it is

possible to achieve a good combination of refined com-

pleteness and refined reliability. For the PS dataset it was

possible to achieve a refined, corrected completeness of

,80% with a refined reliability of ,95%. A refined

completeness of,50%was achieved for the ES datacube,

also with a refined reliability of,95%. For both datasets

the curves in Figures 4 and 5 have negligible merging and

fracture rates.

Thresholds of 10�3 and 10�6 produce arguably the

optimal combination of refined completeness and refined

reliability in Figures 4 and 5. For this reason, the perfor-

mance of the CNHI source finder when using these thresh-

olds was examined further. First, the completeness was

measured as a function of maximum voxel flux. Next, the

fraction of total flux recovered by the CNHI source finder

was measured as a function of source total flux. Finally,

the distribution of the difference between the true position

of the sources and the position measured by the CNHI

source finder was determined.

Figure 6 shows that the CNHI source finder can find

almost all of the PS objects with a maximum voxel

intensity five times brighter than the noise, with a high

refined reliability. The CNHI source finder also finds a

significant fraction of PS objects with a maximum voxel

intensity between three and five times the noise. Unfortu-

nately, the CNHI source finder does not perform as well at

finding the ES objects. Visual inspection of the undetected

ES objects revealed that they are ‘pancake’ galaxies.

These pancake galaxies are spatially resolved, but due

to orientation only extend over a few channels. The

bundling of HI spectra acts as a crude spatial filter, and

the bundling used here closely matches the spatial profile

of the PS objects. This suggests that the CNHI source finder

can be improved by using multiple bundling schemes.

This improvement would be equivalent to using matched

filtering in three dimensions, with the spatial and fre-

quency dimensions using independent filters.

The fraction of each source’s total intensity that is

recovered by the source finder is plotted in Figure 7, and is

referred to as the recovery fraction. The mean recovery

fraction is measured after excluding fragmented sources,

and is overlaid in Figure 7. A poor recovery fraction

requires post-processing of each detection by a second

tool to improve the source parametrisation. The mean

recovery fraction for the 10�3 threshold in Figure 7

asymptotes from ,80% to ,90% as sources become

brighter. The recovery fractions greater than 100% are a

result of comparing total intensities measured in the noisy

datacube to a reference total intensity measured in the

noise-free datacube. This is the most meaningful compar-

ison, though, because it is sensitive to object masks that

are either too large or too small. The recovery rate is as

good as I would expect to do, without overestimating

the total flux. This demonstrates that minimal post-

processing is required to improve the parametrisation of

sources detected by the CNHI source finder.

Using more conservative thresholds of 10�5 and 10�7,

which do not push as far into the noise as higher

thresholds,4 results in a median recovery fraction that

asymptotes from,50% to,90% and,50% to,70% as

sources become brighter. The median recovery fraction

appears to asymptote more rapidly for more aggressive

thresholds. This suggests that as the choice of threshold

Figure 6 The refined completeness as a function of source

maximum voxel intensity. The refined completeness of the point

sources (solid line) and extended sources (dashed line) is shown for

thresholds of 10�3 and 10�6.

4
The meaning of ‘aggressive’ thresholds for the CNHI source finder is the

reverse of thresholds used in intensity threshold based source finders. For

intensity-threshold source finders, lower thresholds are more aggressive

and push further into the noise.
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becomes more aggressive, the total flux measured for a

source will converge to its true value. This suggests two

things. First, the sources with low recovery fractions in

the left panel of Figure 7 are probably objects that have

only barely been detected, and using a more aggressive

threshold would result in a higher recovery fraction.

Second, an alternative use of the CNHI source finder is as

a source parametrisation tool rather than a source finder.

The final component of the analysis is the distribution

of the separation in voxels between the centre of the

sources and their corresponding detection. The separation

distributions of the voxel centres and intensity-weighted

voxel centres are presented in Figure 8.

A separation between the centre of an object and its

corresponding CNHI detection reveals biased source detec-

tion. The centres of an object and its corresponding

detection are calculated as an unweighted mean of the

voxel positions or a flux-weighted mean of the voxel

positions. It can be safely assumed that the voxel and

weighted voxel centres of an object are accurate. A non-

zero separation therefore arises due to a distorted source

detection, where one region of the source is detected more

than the rest. If themean voxel centre separation is sharply

peaked about a separation of zero, then we can conclude

that CNHI detections are on average unbiased representa-

tions of the corresponding source. If the mean weighted

voxel centre separation is similarly distributed, this

demonstrates that the CNHI detections are on average an

unbiased representation of the source’s flux distribution.

In Figure 8 the unweighted (intensity-weighted) separa-

tion distributions of both the PS and ES datasets are

sharply peaked at 0.7 (0.3) and 0.9 (0.5) voxels. This

demonstrates that the CNHI source finder detections are

typically a fair, unbiased representation of the underlying

source and its flux distribution.

This section finishes by presenting examples of the

postage-stamp images generated by the CNHI source

finder. Figures 9 and 10 are postage-stamp images for

two objects selected at random from the PS and ES dataset

(one from each dataset). Both figures demonstrate the

ability of the CNHI source finder to find the boundaries of

sources. Figure 10 also nicely illustrates that the CNHI

source finder is capable of detecting an object extending

over many channels as a single object, rather than frag-

menting it into two or more detections.

6 Summary

WALLABY and other projects that will be carried out on

the next-generation radio telescopes ASKAP and

MeerKAT herald the start of the data-deluge era in radio

astronomy. The sheer size of WALLABY datacubes

necessitates automation of many tasks in the data reduc-

tion pipeline that previously would have been carried out

with some level of manual input by an astronomer.

Complete automation of finding HI galaxies in spectral

datacubes is one of the challenges that is actively being

investigated by WALLABY.

The resolution and size of WALLABY observations

poses a challenge for many existing automated source

finders. This challenge arises from the underlying con-

ceptual framework and algorithm that these source finders

are based on, and not a flaw in the implementation. The

CNHI source finder has been developed using a conceptual

framework that can handle the large size of WALLABY

datacubes and takes advantage of the resolution. Treating

Figure 8 The relative distribution of separations between the

voxel centres and flux-weighted voxel centres of sources and their

corresponding CNHI detections. The separations of the unweighted

and intensity weighted PS positions is shown by the solid and dotted

lines. The dashed and dot-dash lines show the separations of the

unweighted and intensity-weighted positions for the ES dataset.

Figure 7 The recovery fraction of the total intensity of sources in the PS datacube for thresholds of 10�3 (left), 10�5 (middle) and 10�7 (right).

Sources that have been fragmented into multiple detections are represented using solid circles instead of hollow circles. The median recovery

rate of the non-fragmented sources is overlaid as a solid line. The median is measured in bins of size 400mJy/beam km/s. Note that solid circles

are only plotted in the left panel. The appearance of solid circles in the middle and right panels is due to a high density of hollow circles.
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Figure 9 Example postage-stamp images produced by the CNHI

source finder for a PS object with a threshold of 10�3. The red cross

marks the intensity-weighted position of the object. The boundary of

the object is marked by a green line. From the top the images are a

moment 0 map, RA position–velocity diagram, Dec position–

velocity diagram and integrated spectrum. The integrated spectrum

consists of both the object (red line), and an integrated spectrum

over the entire bounding box of the object (black line).

Figure 10 Example postage-stamp images produced by the CNHI

source finder for an ES object with a threshold of 10�6. The

intensity-weighted position and boundary of the object are marked

with a red cross and green line. The postage stamps are a moment 0

map (top), RA position–velocity diagram (second from top), Dec

position–velocity diagram (second from bottom) and integrated

spectrum (bottom). The red spectrum is the object and the black

spectrum is a reference spectrum of the object’s bounding box.
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a datacube as a set of spectra (akin to an IFU observation),

it attempts to find sources by looking for regions in each

spectrum that do not look like noise. This is achieved

using a novel implementation of matched filtering.

Instead of using multiple filters that describe various

types of sources, a single filter describing the noise is

used. Sources are detected using this noise filter by

identifying regions that do not look like noise.

The performance of the CNHI source finder was tested

using the PS and ES datasets in Westmeier et al.

(2012). Analysis of the CNHI source finder output demon-

strated that a reasonable combination of completeness and

refined reliability can be achieved. A refined complete-

ness of,80% and,50%was achieved for the PS and ES

datasets, respectively, with a refined reliability of,95%.

The PS dataset is better than the 80% completeness would

suggest, though, because the CNHI source finder found

,95% of all PS objects with a maximum voxel flux$5s,
with a refined reliability of ,95%. This analysis also

demonstrated that the CNHI source finder recovers a

significant fraction of the source flux. The recovery

fraction asymptotes towards 100% as the total flux

increases. More aggressive (larger) thresholds result in a

recovery fraction that asymptotes faster, and starts higher.

This suggests an alternative use of the CNHI source finder

as a source parametrisation tool used in tandem with

another source finder. Finally, the performance analysis

demonstrated that CNHI detections of a source are an

unbiased representation of the source and its flux distri-

bution. These results are very promising, and warrant

further testing and refinement of the CNHI source finder.

There are three development goals for the CNHI source

finder. Further development of the CNHI source finder will

initially focus on incorporatingmulti-scale bundling. This

will effectively achieve independently scaled matched

filtering in both the frequency and spatial dimensions.

Additionally, the CNHI source finder will have a simple

intensity thresholding test added to it. Incorporating an

intensity thresholding test will make the CNHI source

finder sensitive to sources occupying 3 or fewer channels.

The final development goal is to incorporate Fourier

analysis, polynomial fitting and existing baseline

structure–removal techniques. Upon completing this next

development cycle, the CNHI source finder will be tested

and tweaked using the next round of ASKAP simulations

and the HI Parkes All Sky Survey (HIPASS) (Staveley-

Smith et al. 2000) datacubes. The HIPASS datacubes

have been selected because they have a well-defined

source catalogue, contain a mixture of resolved and

unresolved sources, have known artifacts and calibration

issues and there is a potential for the CNHI source finder to

detect new sources.
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