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Abstract: Based on the magnitude–redshift diagram for the sample of supernovae Ia analyzed by Perlmutter
et al. (1999), Davis & Lineweaver (2004) ruled out the special relativistic interpretation of cosmological
redshifts at a confidence level of 23σ. Here, we critically reassess this result. Special relativity is known to
describe the dynamics of an empty universe, by means of the Milne kinematic model. Applying only special
relativistic concepts, we derive the angular diameter distance and the luminosity distance in the Milne model.
In particular, in this model we do not use the underlying metric in its Robertson–Walker form, so our exposition
is useful for readers without any knowledge of general relativity. We do however, explicitly use the special
relativistic Doppler formula for redshift. We apply the derived luminosity distance to the magnitude–redshift
diagram for supernovae Ia of Perlmutter et al. (1999) and show that special relativity fits the data much better
than that claimed by Davis & Lineweaver. Specifically, using these data alone, the Milne model is ruled out
only at a 2σ level. Alhough not a viable cosmological model, in the context of current research on supernovae
Ia it remains a useful reference model when comparing predictions of various cosmological models.
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1 Introduction

In a recent paper, Davis & Lineweaver (2004) attempted to
clarify several common misconceptions about the expan-
sion of the universe. In particular, they convincingly
pointed out that uniform expansion of an infinite uni-
verse implies that very distant galaxies recede from us
with superluminal recession velocities. Moreover, we can
observe such galaxies. This does not violate special rel-
ativity (SR), because their velocities are not measured in
any observer’s inertial frame. They are measured in the
so-called reference frame of Fundamental Observers, for
which the universe looks homogeneous and isotropic.

Unfortunately while Davis & Lineweaver not only
clarified some misconceptions, they also created a new
misunderstanding. They claimed to ‘observationally rule
out the SR Doppler interpretation of cosmological red-
shifts at a confidence level of 23σ’. (The special relativistic
interpretation of redshift is kinematic, i.e. the Doppler
effect.) As we will explain later, Davis & Lineweaver did
not apply SR properly. Specifically, they did not consis-
tently use the definition of the luminosity distance, DL. SR
is known to describe the dynamics of an empty universe
(Peacock 1999; Longair 2003). Their error led Davis &
Lineweaver to an expression for the luminosity distance
as a function of redshift that was entirely different from
that for an empty universe.

In the framework of general relativity, the calculation
of DL for an empty universe is straightforward. How-
ever, here we will present also an alternative approach,
based entirely on SR. Namely, we will derive DL applying
the kinematic cosmological model of Milne (1933). This

approach is useful for readers without any knowledge of
general relativity. It elucidates the meaning of time and
kinematics in cosmology. The Milne model offers also an
interesting insight into all Friedman–Robertson–Walker
(FRW) cosmological models.

The paper is organized as follows.We begin in Section 2
by deriving the angular diameter distance for an empty
universe using the FRW framework. Next, we present the
corresponding derivation in the Milne model. In Section 3
we derive the luminosity distance in the Milne model and
compare it to the angular diameter distance. In Section 4
we present the resulting magnitude–redshift diagram for
supernovae Ia, and present a summary in Section 5.

2 Angular Diameter Distance

For reference, let us first recall the derivation of the angu-
lar diameter distance for an empty universe in the FRW
framework. The metric of a homogeneous and isotropic
universe is given by the Robertson–Walker line element:

c2ds2 = c2dt2 − a2(t)[dx2 + R2
oS

2(x/Ro)d�]. (1)

Here,
d� = dθ2 + sin2θ dφ2, (2)

and R−2
o is the (present) curvature of the universe. The

function S(x) equals sin(x), x, and sinh(x) for a closed, flat,
and open universe, respectively. The function a(t) is called
a scale factor and relates the physical, or proper, coordi-
nates of a galaxy, r, to its fixed or comoving coordinates,
x: r = ax. This function accounts for the expansion of the
universe; its detailed time dependence is determined by
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the Friedman equations. We normalize a so that at the
present time,a(to) = 1. For an open universe, the Friedman
equations yield

Ro = cH−1
o

(1 − �o)1/2
, (3)

where Ho is the present value of the Hubble constant and
�o is the present value of the total (energy) density in the
universe, in units of the so-called critical (energy) density.

Let us work out the angular size of an object of proper
length �y, perpendicular to the radial coordinate at red-
shift z. The relevant spatial component of the metric
(Eqns 1 & 2) is the term in dθ. The proper length �y

of an object at redshift z, corresponding to scale factor
a(te), for an open universe is

�y = a(te)Ro sinh(x/Ro)�θ = DA�θ, (4)

where we have introduced the angular diameter distance
DA = a(te)Ro sinh(x/Ro). Here, te is the time of emission
of photons. Since a(te)

−1 = 1 + z, we have

DA = Ro
sinh(x/Ro)

1 + z
. (5)

For an empty universe, �o = 0, hence Ro = cH−1
o . More-

over, then a(t) = Hot and the equations of null radial
geodesics are easy to integrate. The result is x =
cH−1

o ln(1 + z). Substituting this into Eqn (5) and using
the definition of the hyperbolic sine, we obtain

DA(z) = cH−1
o

z(1 + z/2)

(1 + z)2
. (6)

This is the angular diameter distance for an empty uni-
verse, derived in the FRW framework.

In the Milne model, the cosmic arena of physical events
is the pre-existing Minkowski spacetime. In the origin
of the coordinate system, O, at time t = 0 an ‘explosion’
takes place, sending radially fundamental observers with
constant velocities in the range of speeds (0, c). The fun-
damental observer with velocity v, Fv, carries a rigid rod
of length �y, oriented perpendicularly to the line of sight
of the observer at O. At time te this rod emits photons.
At the photons’ arrival time at O, to, the rod subtends at O

an angle

�φ = �y/re, (7)

where re is the distance from O to Fv at the time of emis-
sion of the photons, te. We have to = te + tt, where tt is the
travel time of the photons. Since

te = re

v
(8)

and

tt = re

c
, (9)

we obtain

re = cto
β

1 + β
, (10)

where β = v/c. The special relativistic formula for the
Doppler effect is

1 + z =
(

1 + β

1 − β

)1/2

, (11)

where z is the photons’ redshift; hence,

β = (1 + z)2 − 1

(1 + z)2 + 1
. (12)

Using Eqn (12) in Eqn (10) yields

re = cto
z(1 + z/2)

(1 + z)2
. (13)

Since in the Milne model, for any time t and for any fun-
damental observer Fv, r = vt, the observer at O observes
the Hubble flow: v = Hr, where the Hubble constant is
H = t−1. Hence, to = H−1

o . The angular diameter distance
is defined via the equation �y = DA�φ. Therefore, using
Eqn (7) we obtain finally

DA(z) = re = cH−1
o

z(1 + z/2)

(1 + z)2
. (14)

In the above derivation we have applied special rela-
tivity a number of times. First, writing Eqn (9) we have
followed its central assumption, that the velocity of light is
always c, regardless the relative motion of the emitter and
the observer. Secondly, we have applied the special rela-
tivistic, kinematic interpretation of redshift — the Doppler
effect — and used Eqn (11) for it. Finally, writing Eqn (7)
we have assumed that the geometry of space is Euclidean.

Eqn (14) exactly coincides with Eqn (6) for DA for
an empty universe, the latter derived from the metric in
its FRW form. Our second derivation, which was purely
special relativistic, employed other (i.e., conventional
Minkowskian) definitions of distance and time. Still, we
arrived at the same formula for DA. This is so because this
formula relates direct observables: proper (i.e., rest frame)
size of an object to its angular size and redshift. Regardless
of what are the definitions of coordinates in a given coor-
dinate system, their consistent application should lead to
the same result in terms of observables!

3 Luminosity Distance

The relation between the luminosity distance, DL, and the
angular diameter distance is

DL = (1 + z)2DA. (15)

However, this is true in general relativity; let’s check
whether this holds also in the Milne model. Let’s place a
source of radiation at the origin of the coordinate system,
O. We assume again that at time t = 0 at O an ‘explo-
sion’ takes place, sending radially fundamental observers
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with constant velocities in the range of (0, c). At time
te the source emits photons, which at time to reach a
fundamental observer moving with velocity v, such that

vto = c(to − te). (16)

If the source emits continuously photons with constant
bolometric luminosity L, the observer at ro = vto receives
a flux of radiation with bolometric intensity

f = L

4πr2
o(1 + z)2

. (17)

The factor (1 + z)2 in the denominator is due to the
Doppler effect. Specifically, one factor 1 + z is due to the
fact that the wavelength, and so the energy, of the observed
photons is redshifted. The second factor 1 + z is due to the
fact that photons, emitted in the time interval �te, arrive
to the observer in the time interval to = (1 + z)�te.

The luminosity distance is defined by the equation
f = L/(4πD2

L), hence

DL = (1 + z)ro = (1 + z)cβto. (18)

Time to is the time of observation indicated by the clock at
the source, but the fundamental observer is moving with
respect to O, so according to SR, his clock delays com-
pared to that at O. At the moment of observation, his clock
shows time τo = to/γ , where γ = (1 − β2)−1/2. Therefore,
we have

DL = (1 + z)cτoβγ. (19)

Relative to the observer, however, this is the source
that is moving. Using his clock, the observer deduces
that since the Big Bang, the source has moved off to
the distance r′

o = vτo. Because the source is moving, the
distance r′

o is length-contracted relative to its rest-frame
value, ro: r′

o = ro/γ . Hence, the observer will agree that
ro = γvτo = cτoβγ , what yields Eqn (19).

Next, we have

βγ = β

(1 − β)1/2(1 + β)1/2
= (1 + z)

β

1 + β
, (20)

where in the last equality we have used the SR formula for
redshift, Eqn (11). Combined with Eqn (12), Eqns (19) &
(20) yield

DL = (1 + z)2cτo
z(1 + z/2)

(1 + z)2
= cH−1

o z(1 + z/2). (21)

Comparing with Eqn (14) we see that indeed DL =
(1 + z)2DA, in accordance with general relativity.

To derive the angular diameter distance, in Sec. 2 we
have used the observer’s rest-frame. To derive the lumi-
nosity distance, however, in the present section we have
switched to the source’s rest-frame. We have done so for
simplicity of the resulting calculations. In particular, only
in the latter frame is the radiation of the source isotropic,
and one can apply simple Eqn (17) for the observed flux.

Deriving the two distances, we have placed either the
observer or the source at a special position — at the
center of expansion. Are then our results general? Yes:
Although in the Milne model this center does indeed exist,
every fundamental observer considers himself to be at
the center of expansion! This can be easily seen in the
non-relativistic regime. According to the Galilean trans-
formation of velocities, the velocity of any observer O′′
relative to another observerO′ is v′ = v −Vrel, where v and
Vrel are respectively the velocity of O′′ relative to O and
the velocity of O′ relative to O. But by the construction of
the model, the observer at O observes the Hubble flow, so
v = Hor and Vrel = HoR, where r denotes the position of
O′′ relative toO and R denotes the position ofO′ relative to
O. Hence, v′ = Ho(r − R) = Hor′, where r′ is the position
of O′′ relative to O′. Thus, the observer O′ observes an iso-
tropic Hubble flow around him, so is located apparently at
the center of expansion. The point is that this result holds
also for relativistic velocities (Milne 1933; Rindler 1977).
Strictly speaking, in the Hubble law the Hubble constant
is an inverse of the local proper time of the observer at O′.
This is why in Eqn (21) we have identified Ho with τ−1

o .
It is rather surprising why Milne, who insisted so much

on an observables-oriented approach to cosmology, did
not derive himself an explicit formula for the luminosity
distance as a function of redshift. We will see, however,
that he was close to it. The Appendix to his classical paper
on kinematic relativity (Milne 1933) bears the title ‘The
apparent brightness of a receding nebula’. Its final for-
mula describes ‘the total light received byA (the observer)
on his own photographic plate’ in a fairly complex, inte-
gral form. This formula involves implicitly the luminosity
distance, but in terms of the recession velocity of the neb-
ula rather than its redshift. However, while the redshift
of a distant nebula is a direct observable, its velocity is
not. Extracting the luminosity distance from the formula
and using the SR relation between velocity and redshift,
Eqn (11), we rederive the formula for the luminosity
distance given by our Eqn (21).

4 Apparent Magnitude–Redshift Relation

The apparent bolometric magnitude, mB, of a standard
candle located at redshift z is related to its absolute
bolometric magnitude, M, by the equation

mB = 5 log10 DL + 25 + M. (22)

Here, DL is the luminosity distance, expressed in mega-
parsecs. Supernovae Ia turned out to be very good standard
candles in the universe (see, for example, Perlmutter
2003). Perlmutter et al. (1997) cast the above equation
to the form

mB = 5 log10(HoDL) + M, (23)

where

M = M − 5 log10 Ho + 25 (24)
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Figure 1 The magnitude–redshift diagram for supernovae Ia. The
thick solid line shows the prediction of the currently favoured cosmo-
logical model, �m = 0.28 and �	 = 0.72. The thin solid line shows
the prediction of special relativity according to Davis & Lineweaver.
The dotted line shows the correct prediction of special relativity.

is the magnitude zero-point, and the Hubble constant is
expressed in km s−1 Mpc−1 (see eqns 1 & 2 in Perlmutter
et al. 1997). We prefer to rewrite Eqn (23) to the form

mB = 5 log10

(
DL

cH−1
o

)
+ M̃, (25)

where

M̃ = M + 5 log10 c = M + 25 + 5 log10 2.998; (26)

the argument of logarithm in Eqn (25) is explicitly
dimensionless. Introducing Eqn (21) into Eqn (25) yields

mB = 5 log10[z(1 + z/2)] + M̃. (27)

This is the magnitude–redshift relation in the Milne model.
It coincides exactly with the corresponding relation for
an empty universe. In Figure 1 it is shown as a dotted
line. For the magnitude zero-point we adopt the value
M = −3.32, calculated in Perlutter et al. (1997) and used
also in Perlmutter et al. (1999).

To derive the luminosity distance DL = (1 + z)D,
Davis & Lineweaver used the Hubble law:

D = cH−1β. (28)

On comparison with Eqn (18) we see that this leads to the
correct expression for DL provided we identify H with
H

(s)
o , i.e. the value of the Hubble constant at the source

and at the time of observation of photons. However, they
identified H with H

(s)
e , i.e. the Hubble constant at the

source but at the time of emission of photons:

D(DL) = c
(
H(s)

e

)−1
β = cβte. (29)

Combined with the SR expression for β as a function of
redshift, Eqn (12), the above equation yields

D(DL) = c

H
(s)
e

(1 + z)2 − 1

(1 + z)2 + 1
(30)

(eqn 10 of Davis & Lineweaver 2004). Next, Davis &
Lineweaver applied the equality

H(s)
e = (1 + z)H(o)

o , (31)

correct in case of an empty universe. Let’s check whether
this holds also in the Milne model. First, H

(s)
e = t−1

e and
H

(o)
o = τ−1

o , where t and τ are the time measured (by Fun-
damental Observers) respectively at the source and at the
observing point. Hence,

H
(s)
e

H
(o)
o

= τo

te
= γ−1p−1, (32)

where p ≡ te/to. From Eqn (16) we have

β = 1 − p, (33)

so

γ−1 = (1 − β2)1/2 = [p(2 − p)]1/2. (34)

Introducing the above into Eqn (32) yields

H
(s)
e

H
(o)
o

=
(

2 − p

p

)1/2

. (35)

In turn, Eqn (33), used in Eqn (11), yields

1 + z =
(

2 − p

p

)1/2

. (36)

By inspection of Eqns (35) & (36) we see that they indeed
imply Eqn (31). Once again, we have found that the
Milne model exactly describes the dynamics of an empty
universe.

Comparing Eqn (29) with Eqn (18) we see that
Eqn (29) leads to an expression for the luminosity dis-
tance which underestimates the correct one by the factor
of to/te. We have to/te = (to/τo) · (τo/te) = γ(1 + z) =
[(1 + z)2 + 1]/2. Using Eqn (31) in Eqn (30) we obtain

D(DL) = (1 + z)−1 c

H
(o)
o

(1 + z)2 − 1

(1 + z)2 + 1
, (37)

therefore

D
(DL)
L = (1 + z)D(DL) = c

Ho

(1 + z)2 − 1

(1 + z)2 + 1
. (38)

Here, Ho denotes the value of the Hubble constant at the
observing point at the time of observation and for simplic-
ity we have omitted the superscript (o). Combined with
Eqn (25), Eqn (38) yields the function shown in Figure 1
as a thin solid line. Davis & Lineweaver did not provide
an explicit formula for the magnitude–redshift relation in
SR, but this line closely follows their plotted curve.

The thick solid line in Figure 1 shows the
magnitude–redshift relation for the currently favoured
cosmological model: a flat universe with a nonzero
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cosmological constant, �m = 0.28 and �	 = 0.72.1 Use-
ful expressions for the luminosity distance in this model
are given in Chodorowski (2005). We see that the thin solid
line (prediction of SR according to Davis & Lineweaver)
is very distant from the thick solid line. Using the super-
novae data of Perlmutter et al. (1999), Davis & Lineweaver
verified that the model given by the thin line ‘is ruled out
at more than 23σ’ compared with the currently favoured
model.

On the other hand, the dotted line (correct prediction of
SR) follows the thick solid line much more closely. Given
the data by Perlmutter et al. (1999), how close is the pre-
diction of SR to that of the favoured model? The answer
is provided by Perlmutter et al. themselves: Their analy-
sis yielded the constraint 0.8�m − 0.6�	 = −0.2 ± 0.1.
An empty universe corresponds to �m = �	 = 0, hence
for SR, 0.8�m − 0.6�	 = 0. We see thus that within two
standard deviations, the data was consistent with an empty
universe! This is not to defend this model as a viable alter-
native to the currently favoured model. From our mere
existence we know the universe is not empty. A host
of observational evidence consistently points towards the
currently favoured model. This is only to say that a few
years ago, the evidence from supernovae data alone for the
accelerated expansion of the universe was not so strong,
and the assumption of its purely kinematic expansion at
low redshifts could then serve as a reasonable starting
approximation.

Since 1999 the supernovae Ia data has improved.
In particular, the analysis of Tonry et al. (2003) yielded
�	 − 1.4�m = 0.35 ± 0.14. This constituted a modest
improvement over the result of Perlmutter et al., implying
the present acceleration of the universe’s expansion to be
detected at a 2.5σ confidence.2 A significant improvement
was achieved by discovering and observing supernovae Ia
at z > 1 with the Hubble Space Telescope. Figure 8 of
Riess et al. (2004) shows the resulting joint confidence
intervals for (�m, �	) from SNe Ia. In this figure, the point
�m = �	 = 0 lies outside shown confidence contours of
99.7%. Riess et al. claim that ‘with the current sample,
the 4σ confidence intervals (i.e., >99.99% confidence)
are now fully contained within the region where �	 > 0’.
Similar results of the analysis of the Riess et al. sample
have been obtained independently by Wright (2005).

An empty universe is thus not a viable cosmologi-
cal model, but remains a useful reference model when
comparing predictions of various cosmological models.
Figure 7 of Riess et al. shows the magnitude–redshift dia-
gram for SN Ia in a residual form, relative to an empty
universe model. Being eternally coasting, this model has

1 These are recent estimates of the cosmological parameters �m and �	

from the magnitude–redshift relation of observed high-redshift super-
novae, combined with other observational constraints. See, for example,
Tonry et al. (2003).
2 From supernovae alone. Combined with the constraint of a flat universe,
strongly supported by the CMB observations, the data of Tonry et al.
yielded �m = 0.28 ± 0.05 and �	 = 0.72 ± 0.05, implying a currently
accelerating universe at much higher confidence.

a vanishing deceleration parameter, so it naturally sep-
arates accelerating from decelerating models. Also, it is
evident from figure 7 of Riess et al. that the model fits
the data much better than an Einstein–de Sitter universe
(�m = 1, �	 = 0).

5 Summary

We have derived the angular diameter distance DA and the
luminosity distance DL in the Milne kinematic cosmolog-
ical model using only special relativistic concepts. In the
derivations, the central role was played by the special rel-
ativistic Doppler formula for photons’ redshift. We have
found that DL = (1 + z)2DA, in accordance with general
relativity. The derived formulae are identical to these cor-
responding to an empty universe in the FRW cosmology.
We have shown where Davis & Lineweaver failed to cor-
rectly derive the luminosity distance. Finally, we have
presented the resulting magnitude–redshift diagram for
supernovae Ia. While the prediction of special relativity
according to Davis & Lineweaver is far away from that
for the currently favoured cosmological model, the cor-
rect prediction of special relativity follows the favoured
model much more closely. Though not a viable alternative
to the currently favoured model, the Milne model has great
pedagogical value, elucidating the kinematic aspect of the
universe’s expansion. In the context of current research on
supernovae Ia, it remains a useful reference model when
comparing predictions of various cosmological models.
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