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Abstract: Using the formalism of Hamaker, Bregman, & Sault (1996), I derive a method for the polarisa-
tion calibration of observations made with a single radio telescope. This method is particularly appropriate
for observations of pulsars, where the sign and magnitude of the circular polarisation are useful for under-
standing the emission processes at work. I apply the method to observations of PSR J1359–6038 made
using the multibeam receiver on the Parkes radio telescope.
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1 Introduction

The polarisation properties of astronomical sources are
interesting for a number of reasons. They can be used, for
example, in determining the physical processes at work;
thermal sources are not polarised, whereas non-thermal
sources may have a significant degree of polarisation. The
rotation measure of a source can be used to determine mag-
netic field strengths; for example pulsar rotation measures
are used to derive magnetic maps of the Galaxy. How-
ever, the degree of polarisation in astronomical sources
is often small, particularly circular polarisation, and so
careful calibration is necessary before the results can be
interpreted.

Recent papers on polarisation calibration of radio tele-
scopes include those by Hamaker et al. (1996) and Britton
(2000). The Hamaker et al. (1996) paper lays down the
mathematical foundations which are subsequently used
by Sault, Hamaker, & Bregman (1996) to construct a
method for instrumental calibration of a radio interfer-
ometer. Their method is routinely applied to data from the
Australia Telescope Compact Array and incorporated in
the software package miriad. In this paper, I will use the
approach of Hamaker et al. (1996) to develop a method for
calibration of single dish data. This method is particularly
useful for observations of pulsars. In the final section of
the paper I apply the method to observations of the pulsar
PSR J1359–6038 using the 20 cm multibeam receiver on
the Parkes radio telescope and discuss the results.

2 Representation

Following Hamaker et al. (1996) I describe the propa-
gation of an electromagnetic wave in the xyz coordinate
system by

e2 =
〈(

ex

ey

)〉
(1)

where the axis of propagation is the z axis, and ex and
ey are complex. The coherency properties of the electric

field can be expressed in xy coordinates by the coherency
matrix (Born & Wolf 1964)

e =

〈
exe

∗
x

exe
∗
y

eye
∗
x

eye
∗
y



〉

(2)

where the ∗ denotes the complex conjugate. The electro-
magnetic field is converted to electric voltage in the feed
of a radio telescope which, in the case of linear feeds,
consists of two input probes aligned along x and y. A cor-
relator multiplies and averages these voltages to produce
the voltage vectors

v2 =
〈(

vx

vy

)〉
; v =

〈
vxv

∗
x

vxv
∗
y

vyv
∗
x

vyv
∗
y



〉

. (3)

Generally, one is interested in the (true) Stokes parameters,
I, Q, U, and V , which in combination form the Stokes
vector eS . One can express eS in terms of the electric field
vector, e, by

eS =




I

Q

U

V


 = Te; T =




1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0


 . (4)

The propagation of the radiation from the astrophysical
source of interest to the output from the correlator can be
described in the following way (Hamaker et al. 1996). Let
the effects of Faraday Rotation (both through the inter-
stellar medium and the ionosphere) and parallactic angle
rotation be combined into the matrix R. We let the matrix
F represent the feed response (including gains, phases,
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and leakage terms). Hence the voltages at the two probes
can be described by

v2 = FR (5)

and the correlator voltage vector is given by

v = (F ⊗ F∗) (R ⊗ R∗)T −1eS (6)

where ⊗ denotes the Kronecker (or outer) product
(Hamaker et al. 1996). The rotation matrix, R, and the feed
response matrix, F , are given by Hamaker et al. (1996) as

R =
(

cos φ −sin φ

sin φ cos φ

)
;

F =
(

G B

−C H

)
(7)

where each of B, C, G, and H are complex terms. It is
important to note that Hamaker et al. (1996) have shown
that such a formalism does not involve any approxima-
tions, although often, as below, the matrices are then
expanded only to first order.

In this formalism, however, unlike that of Britton
(2000), there is no direct physical association of the vari-
ables B, C, G, and H . B and C can be thought of as
‘leakage’ terms; they describe the leakage of the opposite
polarisation into either receptor. The real parts of G and H

relate to the sensitivity of the two probes and the difference
in the imaginary parts of G and H relates to the phase off-
set between the two channels (often called ‘instrumental
phase’ for a pair of linear receptors). However, this is not
strictly correct, as G and H also mixed with the leakage
terms (Hamaker et al. 1996).

Expanding equation (6) and ignoring (for now) the
effects of rotation we thus obtain




vxx∗

vxy∗

vyx∗

vyy∗


 = 1

2




GG∗ GB∗ BG∗ BB∗

−GC∗ GH∗ −BC∗ BH∗

−CG∗ −CB∗ HG∗ HB∗

CC∗ −CH∗ −HC∗ HH∗




×




1 1 0 0
0 0 1 i

0 0 1 −i

1 −1 0 0






I

Q

U

V


 (8)

where the scaling factor 1/2 arises from the determinant of
T . Multiplying the two 4×4 matrices together we arrive at




vxx∗

vxy∗

vyx∗

vyy∗


 = 1

2




GG∗ + BB∗ GG∗ − BB∗ GB∗ + BG∗ i(GB∗ − BG∗)
−GC∗ + BH∗ −GC∗ − BH∗ GH∗ − BC∗ i(GH∗ + BC∗)
−CG∗ + HB∗ −CG∗ − HB∗ −CB∗ + HG∗ −i(CB∗ + HG∗)

CC∗ + HH∗ CC∗ − HH∗ −CH∗ − HC∗ −i(CH∗ − HC∗)






I

Q

U

V


 . (9)

3 Measured Stokes Parameters

Using equation (9) above and defining the measured
Stokes parameters in the case of linear feeds by

Im = vxx∗ + vyy∗

Qm = vxx∗ − vyy∗
(10)

Um = vxy∗ + vyx∗

iVm = vxy∗ − vyx∗

we can express the measured Stokes parameters in terms
of the true Stokes parameters as follows:

Im = 1
2I
(
g2

1 + g2
2 + h2

1 + h2
2

)
+ 1

2Q
(
g2

1 + g2
2 − h2

1 − h2
2

)
+ U(g1b1 + g2b2 − h1c1 − h2c2)

+ V(g1b2 − g2b1 + h1c1 − h2c2)

Qm = 1
2I
(
g2

1 + g2
2 − h2

1 − h2
2

)
+ 1

2Q
(
g2

1 + g2
2 + h2

1 + h2
2

)
+ U(g1b1 + g2b2 + h1c1 + h2c2)

+ V(g1b2 − g2b1 − h1c2 + h2c1)
(11)

Um = I(h1b1 + h2b2 − g1c1 − g2c2)

+ Q(−g1c1 − g2c2 − h1b1 − h2b2)

+ U(g1h1 + g2h2) + V(g1h2 − g2h1)

Vm = I(g1c2 − g2c1 + h1b2 − h2b1)

+ Q(g1c2 + g2c1 − h1b2 + h2b1)

+ U(−g1h2 + g2h1) + V(g1h1 + g2h2)

where all second order terms inB andC have been omitted.
Somewhat unconventionally I have defined each complex
term above by, for example, G = g1 + ig2 rather than G =
g1e

ig2 to simplify the notation. Note that these parameters
are assumed to be time independent but will not, in general,
be frequency independent. In a perfect system one has
b1 = b2 = 0, c1 = c2 = 0, g1 = h1 = 1, and g2 =
h2 = 0, and hence the measured Stokes parameters are
identically equal to the true Stokes parameters (ignoring
the effects of rotation of Stokes Q into U along the line of
sight).

If the gains and instrumental phase have been solved
for by some other method, as is often the case (e.g. through
observations of a polarised calibration signal injected
directly into the feed), then g1 = h1 = 1 and g2 = h2 = 0
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and equation (11) simplifies to:

Im = I + U(b1 − c1) + V(b2 + c2)

Qm = Q + U(b1 + c1) + V(b2 − c2)
(12)

Um = U + I(b1 − c1) − Q(b1 + c1)

Vm = V + I(b2 + c2) − Q(b2 − c2).

We also note, as Britton (2000) has done, that a rela-
tionship holds between the measured and true Stokes
parameters via

I2
m − Q2

m − U2
m − V 2

m = K(I2 − Q2 − U2 − V 2)

(13)

where K is time invariant and is related to the deter-
minant of the matrix in equation (11). This expression,
the so-called invariant interval, is not frequency invariant
however, as it depends on the (frequency dependent) terms
in the F matrix. Britton’s idea of using the invariant inter-
val for timing purposes has been used to great effect by
van Straten et al. (2001).

4 Effects of Feed Rotation

It is sometimes stated that performing a (short) observa-
tion, rotating the feed through 90◦ and observing again
and summing the two observations has the effect of can-
celling the effect of the leakage parameters. However, this
is not the case, even to first order. The effect of feed rota-
tion effectively converts Q to −Q and U to −U. To sum
the two observations one essentially averages the sum of
the two values of Im and Vm and averages the differences
of the two Qm and Um measurements. Assuming the gains
are correctly calibrated, then using equation (12) above,
one obtains:

Im = I + V(b2 + c2)

Qm = Q + U(b1 + c1)
(14)

Um = U − Q(b1 + c1)

Vm = V + I(b2 + c2)

and the total linear polarisation is thus

Lm = L
√

1 + (b1 + c1)2. (15)

These last two equations show that the measured Stokes
parameters are now a better approximation to the true
Stokes parameters than a single observation would yield.
However, even though the errors in Im and Lm are likely
to be small, the error in Vm can potentially be large if
V is small and b2 + c2 is significant. The error in the
position angle of the linear polarisation will be of order
tan−1(b1 + c1).

A further potentially interesting measurement is to
subtract Vm from one observation with that from an obser-
vation where the feed is rotated through 90◦. In this case
one obtains

Vm = −Q(b2 − c2). (16)

If Q is large, one can then obtain b2 − c2 directly.

5 Effects of Observing a Polarised
Calibration Signal

It is often the case that a cal probe is included in the receiver
package. This probe usually injects a signal between the
two (linear) probes at an angle of 45◦ to both. The cal
thus has I = U and Q = V = 0. Imagine now that the two
probes have identical gains and there is no instrumental
rotation (i.e. we can set g1 = h1 = 1 and g2 = h2 = 0).
Then, if the leakage terms are present, observations of the
cal will yield a signal

vxx∗ = 1
2U(1 + 2b1)

vyy∗ = 1
2U(1 − 2c1) (17)

Vm = U(b2 + c2).

The first two expressions look like gain difference between
the two probes, and the presence ofV looks like instrumen-
tal rotation of U into V . Hence, even though we started
with a system with perfect gains and phases, we derive
using equation (12)

g1 = 1

1 + 2b1

h1 = 1

1 − 2c1
(18)

h2 = b2 + c2

and hence the system looks impure! One then re-observes
the cal (or any other pure U signal) with these terms in
equation (11) and one obtains

Im = U

(
1 − b1

(1 + 2b1)2 + c1

(1 + 2c1)2 + 1
2 b2

2 − 1
2 c2

2

)

Qm = U

( −b1

(1 + 2b1)2 + c1

(1 + 2c1)2 + 1
2 b2

2 − 1
2 c2

2

)
(19)

Um = U

(
b1 + 2b2

1 − c1 + 2c2
1 + 1

(1 + 2b1)(1 − 2c1)
+ b2(b2 + c2)

)

Vm = U

(
2b2(c1 + b1)

(1 + 2b1)(1 − 2c1)
− b1(b2 + c2)

)
.

This implies that one does not, in general, measure a pure
U signal in spite of the calibration procedure.

6 Circular Feeds

The Parkes radio telescope has receivers with linear feeds.
However, many other telescopes have circular feed sys-
tems. To apply this method to receivers with circular feeds
one needs to change the Stokes vector eS to

eS =




I

V

Q

U


 (20)
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and equation (10) to read

Im = vrr∗ + vll∗

Vm = vrr∗ − vll∗
(21)

Qm = vrl∗ + vlr∗

iUm = vrl∗ − vlr∗ .

The algebra can then be worked through to obtain expres-
sions for the measured Stokes parameters in terms of the
true parameters as in equation (11).

7 Application

From equation (11) it can be seen there are 4 mea-
sured quantities (the Stokes parameters) and a total of
12 unknowns. These 12 unknowns comprise the 4 leak-
age parameters (b1, b2, c1, c2), the 4 gain terms (g1, g2,
h1, h2), the total intensity, linear and circular polarisa-
tion of the source, and an unknown angle φ which deals
with rotation along the line of sight such that Q = L cosφ
and U = L sinφ. This angle is made up of the intrinsic
position angle of the source, the rotation measure through
the interstellar medium and ionosphere, the parallactic
angle and the feed angle(s) with respect to some refer-
ence frame. Of these angles, only the ionospheric rotation
measure and the parallactic angle are time variable. Unless
some independent measurement can be made of the iono-
sphere, this introduces unwanted noise into the calibration
matrices. Ignoring this, rotating the feed relative to the
sky (for example as naturally occurs with a feed mounted
on an alt–az telescope) can be used to determine the
12 unknowns. Provided we have sufficient independent
measurements of the Stokes parameters at a variety of
parallactic angles, we can, in principle, determine all the
unknowns. Sault et al. (1996) show that observations of an
unpolarised source will yield only 9 of the unknowns, but
that observations of a strongly linearly polarised source
can determine all 12.

Pulsars make ideal sources for (self-)calibration as
they are generally highly linearly polarised and have a
reasonable degree of circular polarisation. Furthermore,
the polarisation changes across the pulse profile and one
can thus use the information in multiple phase bins at a
given pointing to help solve for the unknowns. The main
drawback to using pulsars as calibrators is that they scin-
tillate which implies that the total intensity, I, can vary
significantly on timescales of order minutes. The frac-
tional polarisation is not affected by scintillation, however,
and therefore to overcome this problem one is forced to
normalise the measured Stokes parameters by Im at the
expense of being unable to measure the true value of
I. Unfortunately this procedure introduces errors as, of
course, Im is not equal to I. In practice these errors will
be small unless the source is highly polarised and b1 − c1

is large.
A previous method for calibration of pulsar signals

was given in the Appendix of Stinebring et al. (1984)

Figure 1 Measured Stokes parameters for PSR J1359–6038 as a
function of parallactic angle. Here, Lm is denoted by circles, Qm by
squares, Um by triangles, and Vm by crosses. The lines denote the
best fit to the data after solving equation (11).

and is still in use (e.g. Weisberg et al. 1999). However,
their method involves a number of simplifications and
assumptions which, in my view, are incorrect in some
cases and which are, in any case, no longer necessary to
make. Any least squares fitting algorithm can easily solve
for 12 unknowns with ∼100 data points in a matter of
seconds and the full equations should thus be used.

Data on PSR J1359–6038 were collected on two sepa-
rate occasions in July and Novmeber 2000. Each observing
session lasted approximately 10 days and we obtained
65 and 66 independent observations covering the whole
parallactic angle range available (approximately ±94◦).
These data were taken using the 64 m Parkes telescope
using the centre beam of the multibeam receiver at a central
observing frequency of 1318 MHz and with a total band-
width of 128 MHz. At the start of the observing session
observations were made of the flux calibrator Hydra A to
obtain the system equivalent flux density. Then, a 90 sec
observation of the cal signal was made followed imme-
diately by a 3 min observation of the pulsar. The pulsar
observation was calibrated for differential gain and phase
in the two probes based on the results from the cal obser-
vation and flux calibrated from the observations of Hydra
A. Pulse profiles were formed in each of Im, Qm, Um, and
Vm with 256 phase-bins per profile and 8 frequency chan-
nels across the 128 MHz total bandwidth. Qm, Um, and
Vm were then normalised by Im.

Figure 1 shows the measured (normalised) Stokes
parameters as a function of parallatic angle from data taken
in November 2000 from the peak of the pulse profile in
one of the frequency channels centred at 1365 MHz. It can
clearly be seen that the circular polarisation, Vm, varies
significantly with parallactic angle and that the variations
are in phase with the variations in Qm. The deviation in Vm

is very large with a peak-to-peak amplitude of about 0.2.
The implication of this (from equation (12)) is that b2 −c2

is of this order, given that Qm is about unity.
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Figure 2 Rotation measure of PSR J1359–6038 as a function of
parallactic angle before polarisation calibration. The error bars are
formal errors from the fitting process used to determine the rotation
measure.

Figure 3 Rotation measure of PSR J1359–6038 after polarisation
calibration.

It was shown in Section 5 that observations of the cal
induces subsequent errors in the observed Stokes param-
eters. These errors can be removed by (re-)solving for
the gains and phase terms (although nominally the cal
observations are used to set these) using equation (11).
Practically, however, I set g1 = 1 and h1 = 0 and leave
them fixed; g2 and h2 then measure the relative gain and
phase differences between the two probes. I then used a
least squares fitting algorithm (in this case the Levenberg-
Maquart Method; LMM) to minimise the residuals of
(|Qm − Q| + |Um − U| + |Vm − V |) and solve for the 9
unknowns from equation (11) given the data (remember-
ing that Im is fixed at 1, all the observed Stokes parameters
are normalised by Im and g1 = 1, h1 = 0). The result of

the fitting is shown in Figure 1. At this particular fre-
quency, b1 = 0.0, b2 = −0.05, c1 = 0.02, and c2 = 0.12.
Given this and the discussion in Section 4, rotating the
feed through 90◦ and observing again still induces a leak-
age of I into V of order 7%, about the same size as the true
V signal in many pulsars. As pointed out, an independent
measurement of b2 − c2 can be obtained in this way, and
confirms the measurements derived above.

At this point, all the parameters of the matrix form
of equation (11) have effectively been determined. The
true Stokes parameters can then be obtained by multiply-
ing the observed Stokes parameters with the inversion of
this matrix. This can be achieved with, for example, the
numerical recipes routine lubksb.

Figure 2 shows the rotation measure of the pulsar as a
function of parallactic angle prior to polarisation calibra-
tion. There are clear systematics in the data with sinusoidal
variations of ∼10 rad m−2 about a mean of 35 rad m−2.
These are due to the frequency dependency of the leak-
age terms B and C. Figure 3 shows the effects of the
calibration. The mean rotation measure is now 16 rad m−2

and the systematic effects are largely absent.

8 Conclusions

Using the excellent Hamaker et al. (1996) paper as a
mathematical foundation, I have derived the matrices link-
ing the true Stokes parameters to the observed Stokes
parameters for single dish observations. It is then a compu-
tationally trivial task to solve for the terms in this matrix by
least squares minimisation and thus provide a polarisation
calibration of the feed and receiver system.
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