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Abstract: The effect of nonaxisymmetric radiation drag on relativistic jets in active galactic nuclei (AGN)
is discussed. The radiation force due to inverse Compton scattering of photon fields from a noncircular
accretion disk is calculated. It is shown that such nonaxisymmetric drag can cause jet path distortion within
the subparsec region of the black hole. This subparsec scale distortion is potentially observable with the
current VLBI, VLBA techniques. Any modulation of the axially asymmetric distribution of disk emission
can result in variability in electromagnetic radiation from the jet.
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1 Introduction

It is widely accepted that the main activities of active
galactic nuclei (AGN) are powered by black holes (BHs)
accreting matter through accretion disks. In such a system
a relativistic jet is usually formed and accreting matter
eventually releases gravitational potential energy through
radiation so that the disk is a strong source of radiation
fields, mainly in UV or soft X-rays. There is no single
widely accepted model for the formation of an AGN jet.
However, if a relativistic jet is formed sufficiently close to
the putative BH, it must pass through the strong radiation
field from the accretion disk and be subjected to radia-
tive acceleration or deceleration through inverse Compton
scattering. Soft photons from the disk are scattered by rel-
ativistic particles in the jet to hard X-rays or γ -rays. Such
process is believed to be responsible for γ -ray emission
from blazars, a class of AGN with jets directed nearly
along the observer’s line of sight, which have high energy
γ -ray emission (von Montigny et al. 1995; Thompson et al.
1995; Gaidos et al. 1996; Quinn et al. 1996; Schubnell et al.
1996; for a theoretical model based on inverse Compton
scattering see Dermer & Schlickeiser 1993).

The radiative effect on the bulk motion of relativis-
tic jets was discussed by several authors (O’Dell 1981;
Phinney 1982, 1987; Melia & Königl 1989; Sikora et al.
1996; recently Luo & Protheroe 1999, hereafter LP).
O’Dell (1981), also Phinney (1982), considered radiative
acceleration. The essential condition for acceleration to
occur is that most of incoming photons seen in the jet
frame should be directed along the jet, and this may be the
case if the source is a point-like source. However, since
disk emission is not point-like, this condition is generally
not satisfied by a highly relativistic jet (e.g. Phinney 1982),
and radiative deceleration is more relevant (Phinney 1987;
Melia & Königl 1989; Sikora et al. 1996; LP).

One important assumption made in earlier discussions
is that disk emission is axially symmetric. So, the only
effect on the jet flow is in the jet direction (it is usually

assumed that the jet is normal to the disk plane and along
the spin axis of the BH). However, there are cases in which
accretion may not be circular. For example, eccentric
accretion can occur if the nucleus is a binary BH system
with a less massive BH orbiting the more massive BH and
accretion is subjected to a tidal perturbation from the sec-
ondary BH (Eracleous et al. 1995), or if there are global
disk instabilities (e.g. Papaloizou & Pringle 1984, 1985;
Pringle 1996, 1997), which may cause the disk to become
warped or noncircular. A noncircular accretion disk gives
rise to a nonaxisymmetric radiation field that depends on
the azimuthal angle, and hence the radiation effect on the
jet is not axisymmetric, resulting in a perpendicular (to the
BH spin axis) radiation force.

The purpose of this paper is to explore Compton drag
on jets by nonaxisymmetric photon fields and the resulting
jet path distortion in the vicinity of the BH. Specifically,
we calculate the average momentum transfer to plasmas
due to inverse Compton scattering by including nonaxi-
symmetry in photon fields. In doing so, we assume that
particles in the jet frame have an isotropic angular distri-
bution (that is, they move in random direction). Through
calculation of nonaxisymmetric drag, one may explore a
possible link between subparsec jet structures to activ-
ities occurring on the disk. With the advance of VLBI
and VLBA technique, subparsec structures are potentially
observable (e.g. Junor & Biretta 1995), and such a link
can be tested observationally. As shown in earlier work
(LP) the drag effect depends on the composition of the jet,
and in general, drag is reduced if jets contain a significant
fraction of protons since they have a much smaller scat-
tering cross section compared to electrons or positrons.
In calculating the radiation force, scattering by protons is
neglected, and protons affect the drag only by providing
inertia (i.e. make jet more ‘heavy’).

In Section 2, a formula for calculating the radiation
force in the perpendicular (to the jet flow) direction is
given in the Thomson regime. A noncircular accretion
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disk model is considered in Section 2.1, and the physi-
cal processes that produce nonaxisymmetric accretion are
discussed in Section 3. Jet path distortion due to axially
asymmetric drag is discussed in Section 4.

2 Compton Drag

A relativistic jet moving through an intense radiation field,
e.g. radiation from an accretion disk, can be either accel-
erated or decelerated depending on whether particles in
the jet frame see incoming photons propagating along or
against the jet direction. For example, if incoming photons
are in the direction against the jet flow, the jet is decelerated
because more momentum is beamed (carried by scattered
photons) in the jet direction through inverse Compton scat-
tering. Radiative acceleration through inverse Compton
scattering, though it can occur in principle, is ineffective
because of the spatial extent of the photon distribution
(Phinney 1982; Sikora et al. 1996; LP). Thus, radiative
deceleration is likely to occur provided that the jet is
relativistic.

To calculate radiative drag, consider a plasma cell mov-
ing with the jet and assume that there is no pair production
in the cell. Although the latter assumption is not strictly
accurate, it makes the calculation tractable. It is assumed
that an external photon field is from an accretion disk with
the photon field distribution given by nph(ε,�), where ε is
the photon energy, and � = (φ, cos θ) is the polar angle
of the photon propagation direction k̂. As plasma parti-
cles moving through the radiation field, they are slowed
down because of inverse Compton scattering (Phinney
1982; 1987; Sikora et al. 1996; LP). The radiation force
is thus identified as the average momentum transfer from
incoming photons to the plasma. As shown in LP, an ultra-
relativistic jet, even starting with a very large bulk Lorentz
factor such that electrons are in the Klein-Nishina regime,
is rapidly decelerated to the Thomson regime. Therefore,
I only consider scattering in the Thomson limit. The radi-
ation force (mec s−1 per unit volume) on the plasma cell
initially moving along the z direction is given by

f = −cne0

〈∫
dε

∫
d�nph(ε,�)(1 − β cos�)

×
∫
dεs

∫
d�s

dσ

dεsd�s

(
εs k̂s − εk̂

)〉
, (1)

where all quantities with subscript s are for scattered pho-
tons, dσ/dεsd�s is the differential cross section, βc is
the electron (positron) velocity, ne0 is the average number
density of electrons (positrons), � is the angle between
the incoming photon and the electron motion, 〈. . .〉 is
average over the particle distribution. All quantities on
the right hand side of Equation (1) are in the jet frame.
In the Thomson regime, the differential cross section can
be approximated by dσ/dεsd�s ≈ σTδ[εs − γ 2ε(1 −
β cos�)]δ(�s − �e), where σT is the Thomson cross
section, γ = (1 − β2)−1/2, and �e = (φe, cos θe) is the
direction of motion of the electrons (Blumenthal & Gould
1970; Reynolds 1982). The z-component of Equation (1)

was calculated in detail in LP. For axisymmetric emission,
nph and ε dε sin θ are independent of φ (in the observer’s
frame) and we have fx = fy = 0 and the radiation force
is along the jet axis. Hence, the perpendicular compo-
nents f⊥ = (fx, fy) describe nonaxisymmetric drag and
are calculated in the following section.

2.1 A Nonaxisymmetric Disk Model

There is a net perpendicular force f⊥ �= 0 on the plasma
cell when the radiation fields are not axially symmetric.
A nonaxisymmetric radiation field can be due to noncircu-
lar accretion, say elliptical accretion (e.g. Eracleous et al.
1995), or due to disk warping as a result of some instabil-
ity (Pringle 1996). At a radial distance sufficiently close to
the BH, particle trajectories are nearly circular because of
the strong gravitational field which tends to circularise the
particle orbits through, for example, the Lense-Thirring
effect (Thorne, Price & Macdonald 1986). In general, non-
axisymmetry can be described by an azimuthal number,
m, with m = 0 corresponding to axisymmetry and m = 1
to the lowest order nonaxisymmetry (off-centre).

To calculate radiation drag, consider a noncircular disk
which is planar and consists of a series of annuli with their
centres being not necessarily at the same point. Assume
that there are N annuli with centres at x1, . . . , xN on the
x-axis, and the inner and outer radii are given by ai and
bi , respectively. The coordinates are chosen such that the
BH is at x1 = 0. In general, such a pattern evolves as the
processes that cause noncircular accretion vary on a cer-
tain time scale. Consider a plasma cell at (x, z) moving
initially along the z direction. The photon energy flux den-
sity from a given ring of the ith annulus, R → R +�R,
is axisymmetric and is represented by Fi(ε̃, R) where ε̃ is
the photon energy (in mec

2). In the following, all tilded
quantities refer to the observer’s frame. Then, the photon
number density in the jet frame can be written as

nph(ε,�,R)dR = R Fi(ε̃, R) dR

2πcε̃

∑
±
H(|x − xi | ± R)

× cos θ̃±
δ(cos θ − cos θ±)

r2± + z2
, (2)

where r± = − (x−xi) cosφ±[R2 − (x−xi)
2 sin2φ]1/2,

φ is the azimuthal angle with respect to the direction of
motion of the cell, cos θ̃± = z/(r2± + z2)1/2, H(x) = 1
for x > 0 and H(x) = 0 otherwise. Note that a different
definition for F(ε̃, R) was used in LP where it represents
the photon number flux density. Equation (2) with cos θ̃±
corrects an error in Equation (2.4) in LP and also Equation
(2.6) in Dermer & Schlickeiser (1993). The negative term
is nonzero when x is outside the ring.

Using Equation (1) and writingFi(ε̃, R) = Fi(R)δ(ε̃−
ε̃R)where ε̃R andFi(R) are respectively the photon energy
(inmec

2) and the total flux from the ring atR, one obtains
the radiation force in x-direction

fx = 2σT

3π
ne0$〈γ 2〉

N∑
i=1

∫ bi

ai

dR R−1 Fi(R)ξi, (3)
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Figure 1 A model of nonaxisymmetric accretion disk consisting
of two annuli with their centres shifted relative to each other (at x1
and x2). The BH is assumed to be at x1 = 0. The inner and outer
radii of the two annuli are represented respectively by a1 (= Rmin)
(the innermost solid circle), b1 (the middle solid circle) and a2 (the
outer dashed circle), b2 (= Rmax) (the outermost solid circle). The
plasma cell is at (x, z), moving in the z-direction.

where the flux density Fi(R) is in mec
2 cm−2 s−1, and

ξi =
∑
±

∫ π

φ0

dφ H(|x − xi | ± R)

(
R

r±

)2

D−1±

× sin3 θ̃± cos θ̃± cosφ, (4)

with D± = 1/(1 −βb cos θ̃±), and φ0 =π − arcsin(R/
|x− xi |) for |x − xi | > R and φ0 = 0 otherwise. For
the chosen geometry shown in Figure 1, we have fy = 0.
Similarly to the case of parallel drag (cf. O’Dell 1981;
Phinney 1982; Sikora et al. 1996; LP), the perpendicu-
lar force is ∝ 〈γ 2〉, and thus the relativistic effect is to
enhance the drag. One noticeable difference between the
parallel and perpendicular components is that fx increases
with $ (while the parallel component, fz, increases with
$2, see Equation 2.6 in LP). For |�xi |/R� 1 with
�xi = x − xi , the integration in Equation (4) can be car-
ried out to obtain ξi ≈ (π/2) (�xi/R)G(θ̃R), where
G(θ̃R)= [(1 − βb cos θ̃R)(3 − 4 cos2 θ̃R) − βb cos θ̃R
sin2 θ̃R] sin3 θ̃R cos θ̃R , θ̃R = θ̃+ with r+ =R. When the
disk is strictly circular, with its centre at x = x1 = · · · =
xN = 0, one has ξi = 0 at any z, corresponding to the
axisymmetric drag along the jet axis.

2.2 Perpendicular Force

In general, fx is nonzero and strongly depends on z. In
the following, I consider a disk with an inner part which
is circular and called the inner disk, with the centre at
the BH, and an outer part, called the outer disk, which is
also circular but with its centre shifted along x-axis to x2

with respect to the inner disk. The result obtained can be
extended straightforwardly to more general cases N > 2.
To calculate (3), the corresponding inner and outer radii
of the two annuli are represented by a1 = Rmin ≤ R ≤ b1

and a2 ≤ R ≤ b2 = Rmax, as shown in Figure 1. Let Ld
be the disk luminosity (erg s−1), and assume that most of
the radiation is from the inner part of the disk. The flux
density can be written as

Fi(R) = χi−1Ld

2πmec2
F∗iR−δ

i , (5)

where i = 1, 2 correspond respectively to the inner and
outer part of the disk, F∗i are the normalisation con-
stants such that radial integration gives (1 − χ)Ld (for
i= 1) and χLd (for i= 2). For a stationary accretion
disk model, in which the dominant pressure is due to
radiation and the dominant opacity is due to Thomson
scattering, the radial scaling is typically δ1 = 3 (Shakura &
Sunyaev 1973; Treves, Maraschi & Abramowicz 1988;
Blandford 1990). The characteristic temperature is given
by Ts = (2πF/σs)1/4, where F = mec

2Fi(R) is the
local flux density (erg cm−2 s−1) and σs is the Stefan-
Boltzmann constant. The outer disk is assumed to radiate
reprocessed radiation (from the inner disk). Thus, the
luminosity from the outer disk is only a small fraction,
χ , of Ld . Since most of the disk luminosity comes from
within a very small radius (less than 50Rg where Rg =
GM/c2 = 1.48 × 1013 cm (M/108M�), M is the BH
mass), it is reasonable to assume that the outer disk sees
an isotropic radiation from the central region, and one may
take for the radial scaling, δ2 ≈ 2.

Substituting (5) for (3), the radiation force is expressed
in term of an integration over R,

fx ≈ σTne0Ld

3π2mec2
$ 〈γ 2〉

∑
i=1,2

χi−1F∗i
∫
dR R−δ

i
−1ξi,

(6)

where ξi is given by (4), the integration intervals are (Rmin,
b1) for i = 1 and (a2, Rmax) for i = 2. The first (i = 1)
and second (i = 2) terms correspond respectively to the
contribution from the inner and outer disk. Assuming that
the electrons (positrons) have an isotropic angular distri-
bution and their energy distribution is a power law, γ−p,
with the power index p, γmin ≤ γ ≤ γmax and normal-
isation to ne0, then, one obtains 〈γ 2〉 ≈ (γ

p−1
min γ

3−p
max −

γ 2
min)(p − 1)/(3 − p) = 2γ 2

min ln(γmax/γmin) for p = 3.
The radiation force due to photons from the inner and

outer part of the disk may have opposite sign and can
cancel each other, giving zero net perpendicular force
fx = 0 at a certain distance, z. For |�xi |/R � 1, it
can be shown from (4) that there is a characteristic height,
zi , below which the asymmetry is mainly due to the differ-
ence between the photon densities from the two regions
with respectively �xi > 0 and �xi < 0, and the perpen-
dicular force is towards the centre of the inner disk. At the
height z > zi , the asymmetry arises from sign change in
G(θ̃R) (cf. Equation 4), which tends to move the jet away
from the centre.

An example is shown in Figure 2, in which fx as well as
the two components, fx1, the force due to the inner disk,
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Figure 2 Plot of fx1, −fx2 and fx = fx1 + fx2 against x for
z = 50. The disk consists of an inner part (inner disk) with radius
Rmin ≤ R ≤ b1, and an outer part (outer disk) with a2 ≤ R ≤ Rmax.
All the relevant radii, distances are in Rg . The parameters are:
Ld = 0.1LEdd, M = 108 M�, δ1 = 3, δ2 = 2, χ = 0.1, p = 3,
γmin = 50, γmax = 104, $ = 50, a1 = Rmin = 6, b1 = 100,
a2 = 200, b2 = Rmax = 103, x1 = 0, x2 = 40.
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Figure 3 Plot of fx2 against z for x = 10, 20, 30 (from upper to
bottom). Note that fx2 changes from positive sign to negative sign
(with the solid curves corresponding to fx2 < 0) and fx2 = 0 at
z ≈ 400. The parameters are the same as in Figure 2, and all radii,
distances are in Rg .

and fx2, the force due to the outer disk, are plotted against
x for z = 50. The plot of fx2 is approximately linear in x
as expected from (3), and (4). The equilibrium point is at
x ≈ 4 where fx = fx1 + fx2 = 0.

Figures 3 and 4 show the radiative force due to radiation
from the inner and outer part of the disk. The force due to
radiation from the outer disk changes sign at z ≈ 400
from positive to negative. The location of fx2 = 0 is
not very sensitive to x provided that |�x2|/R � 1. One
estimates that ξ2 changes sign when cos θ̃R > 0.68. The

�fx1 /ne0

10
3

10
2

10
�3

10
�1

z
10

10

Figure 4 Plot of fx1 against z for x = 20 with the same parameters
as in Figure 2.

effectiveness of drag by photons fromR decreases rapidly
with increasing R. Thus, fx is important for noncircular
accretion extending only to a certain radius.

3 Nonaxisymmetric Accretion

There are extensive discussions on noncircular accretion
in X-ray binaries, mainly motivated by modelling the
quasi-periodic variability in their light curves (e.g. Iping &
Petterson 1990; Pringle 1996). However, relatively little
attention has been given to noncircular accretion inAGNs.
The main reason is probably that we have much more
detailed observations of stellar disks compared to AGNs.
As in stellar disks, axially asymmetric accretion can occur
if the central object, i.e. a BH, is orbited by another less
massive BH, or if a global disk instability occurs with
nonaxisymmetric modes, which will be considered here
in detail.

3.1 BH Binaries

Possible formation of BH binaries in AGN, as a result
of mergers of galaxies, was first discussed by Begelman,
Blandford & Rees (1980) and further studied in consid-
erable detail by others, e.g. Valtaoja, Valtonen & Byrd
(1989), Governato, Colpi & Maraschi (1994). During the
merger, the orbital energy of the system can be efficiently
removed through stellar dynamical processes, mainly the
slingshot mechanism by passing stars, in a relatively short
time scale 105 ∼ 106 yr. As a result, a loss-cone is formed
in the stellar distribution and the stellar processes become
less important in dissipating the orbital energy. During
this stage, the orbital energy is removed much more
slowly through stellar diffusion into the loss-cone or
through a more massive BH accreting matter, and thus
the binary remains stable for 108–109 yr, with a separa-
tion a= 0.1 − 1 pc and an orbital period given by Porb ≈
280 [q/(1 + q)]1/2(a/0.1 pc)3/2 (M/108 M�)−1/2 yr,
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where q =M/m is the mass ratio of primary to secondary,
and a is the binary separation.

Similarly to stellar disks, the disk is unstable due to
tidal perturbation by the secondary, and an eccentricity
develops (Lubow 1991). Using an argument analogous to
stellar disk theory (e.g. Lubow 1991), one can estimate
the minimum radius at which eccentricity may develop.
The growth time is given by τecc ≈ q2Porb. For a primary
with M = 108 M�, and a separation a = 0.1 pc, we have
the orbital period P ≈ 280 yr. The growth time for the
eccentricity, e, is τecc ≈ (M/m)2P = 2.8 × 104 yr for
M/m = 10, where m is the mass of the secondary. This
should be compared to the circularisation time τcirc ≈
8×104(M/108 M�)(105 K/T )1/2(1+e)(R/200Rg)2 yr.
For the eccentricity to develop, the relevant circularisation
time scale must be longer than the eccentricity growth
time. To make τecc < τcirc, one needs R ≥ 200Rg , i.e.
eccentric accretion can occur as close to the BH as R ≈
200Rg . When calculating fx using the model given in
Figure 1, this radius corresponds to a2.

3.2 Disk Instability

Axial asymmetry in photon fields can arise from a global
disk instability of nonaxisymmetry such as Papaloizou–
Pringle instability (Papaloizou & Pringle 1984), or
radiation-driven disk warping (Pringle 1996). For illus-
trative purposes, I only discuss the latter. Pringle (1996,
1997) has shown that disk warping may be driven by radi-
ation from the central region of the disk. The outer part of
the disk can be optically thick and irradiated by the inner
part. If the outer part intercepts a sufficiently large frac-
tion of the luminosity, the disk is unstable and becomes
nonplanar. This is because the optically thick part of the
disk will re-emit most of the luminosity it receives, and
if irradiation is nonuniform so is re-radiation. There is a
nonuniform back-reaction on the disk and thus it would
induce a torque, causing the disk to warp. The minimum
radius RW , at which the warping occurs, is estimated by
comparing the time scale (∝R2) for flattening locally and
the time scale (∝R3/2) for instability to grow, that is,
R≥RW = 4 × 103η2(Ld/0.1LEdd)

−2, whereη is the ratio
of vertical (R, z) to azimuthal (R, φ) viscosities (Pringle
1996). If the re-radiated luminosity is a significant fraction
of Ld , the warped disk may provide a sufficient number
of photons to decelerate the jet.

For a Kerr BH, disk warping may occur because of
the Bardeen-Petterson effect, which is the combination
of gravitomagnetic force due to BH and viscous force
(Thorne et al. 1986). A disk at large radial distance, where
the orientation of the disk is determined by the angular
momentum of the accretion disk, is not necessarily planar
and hence may not be axisymmetric. At radial distance
closer to the BH, due to the Bardeen-Petterson effect, the
disk orients itself to the equatorial plane of the BH so
that the disk appears warped (Thorne et al. 1986). The
characteristic radius for the Bardeen-Petterson effect to
be important is R ≈ 104Rg .

4 Jet Path Distortion Due to Radiation Force

There is strong evidence from VLBI, VLBA observations
for the existence of jets in the subparsec region such as
recent VLBI images of M87 with the linear resolution of
0.01 pc (e.g. Junor & Biretta 1995) and the recent VLBA
observation of NGC4151 (Ulvestad et al. 1998).An impor-
tant feature of subparsec jets like M87 (also NGC4151) is
the misalignment of the subparsec jet relative to the large-
scale (pc or kpc) jet, suggesting that the jet is curved in the
subparsec region (e.g. Zensus 1997). Such misalignment
may be caused by inhomogeneous external media that
confine the jet. Alternatively, it is suggested here that sub-
parsec curvature is caused by nonaxisymmetric Compton
drag provided that the subparsec jet consists mainly e±.
Then, one may establish a connection between the jet sub-
parsec distortion and the disk activities such as noncircular
accretion and disk instabilities.

The radiation pressure is mecfxRj/ne0, and should
be compared with the pressure of the external medium,
Pext = nextκT , where Rj is the radius of the jet, next

is the number density of external plasmas, T is the
temperature. Thus, the radiation pressure can be dom-
inant when next/ne0 ≤ (fx/ne0) (Rj/c) (mec

2/κT ) =
104 (fx/ne0) (Rj/Rg) (108 K/T ). In the following, the
density ne0 is assumed to be large so that the radiation
pressure is dominant over external medium pressure (this
assumption is reasonable in the region near the nucleus).

When the external medium is not important compared
to radiation force, we may assume that the jet adjusts itself
by shifting along x in response to the radiation pressure
such that fx = 0. Figure 5 shows the curves for fx = 0.
It is emphasised here that fx is calculated by assuming
the plasma cell is moving initially in the z direction, and
hence these curves do not correspond to the exact jet tra-
jectory. Nonetheless, since fx strongly depends on z, the
perpendicular component of the radiation force is rather
inhomogeneous in the z direction, and thus, it can bend
a jet. The jet emitted at x = 0 would bend towards the
x-axis direction due to the nonaxisymmetric (with respect

logzlogz
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Figure 5 A trajectory for fx = 0. The parameters are the same as
in figure 2. Right: x2 = 80.
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to x = 0) radiation field from the outer part of the disk.
For increasing z, the jet would curve back towards x = 0
axis as the force from the outer disk decreases to zero and
changes sign at z ≈ 400.

The calculation in the previous sections applies to a jet
that contains protons as well. Since protons have a much
smaller scattering cross section, they make negligible con-
tribution to fx/ne0 and the calculation in Section 2 is still
valid. However, radiation force is reduced because protons
carry a fraction of the jet luminosity, and accordingly, we
have smaller ne0γ̄ , where γ̄ is the average Lorentz fac-
tor of electrons (positrons). Assume a jet starts with a
luminosity Lj = mec

2ne0γ̄ + mpc
2npγ̄p, where γ̄p is

the average Lorentz factor of protons in the jet frame.
Thus, given the same jet luminosity, compared to the pure
e± jet, the radiation force would decrease by a factor of
1 + µpnpγ̄p/γ̄ ne0 where µp is the proton to electron
mass ratio. It follows that the proton effect is important
when np/ne0 > γ̄ /γ̄pµp. For example, for cold protons
with γ̄p = 1, the proton effect should be considered when
np/ne0 > 0.04 for γ̄ = 50. This threshold is further
reduced for relativistic protons, i.e. γ̄p � 1.

When radiation pressure can dominate over external
medium pressure near the nucleus, nonaxisymmetric drag
is the main cause for the jet distortion. Thus, the main
composition of a subparsec jet with strong curvature is
likely to be electrons and positrons. The e± composition
of subparsec jets was also conjectured in the two-fluid
model by Sol, Pelletier & Asséo (1989). In their model,
e± jets are dominant only in the subparsec region and
radio lobes at large scale are powered by jets with a sig-
nificant fraction of protons since the proton component
can transport a large luminosity to a large distance further
away from the nucleus.

5 Discussion and Conclusions

Nonaxisymmetric radiative drag in relativistic AGN jets is
discussed by considering a planar disk with an inner, circu-
lar disk and an outer disk that is not axisymmetric relative
to the inner part. The calculation can be generalised to
a nonplanar disk, say warped, with a more complicated
nonaxisymmetry.

Soft photon fields from the noncircular disk are not
axially symmetric, and there is a net perpendicular force,
causing jet distortion in the vicinity (the subparsec region)
of the BH. With current VLBI and VLBA techniques, jet
curvature in the subparsec scale is potentially observable.

When jets contain a significant fraction of protons,
Compton drag is reduced and jet distortion as a result of
the drag is also reduced. When radiation pressure dom-
inates over the external pressure, nonaxisymmetric drag
can be a major cause of subparsec jet bending. In this
case, any observed strongly curved structure in subparsec
regions would favor a jet composed mainly of electrons
and positrons.

Several processes that can produce axially asymmet-
ric accretion are considered. These include eccentric

accretion due to tidal perturbation by the secondary BH
in a black binary, radiation induced noncircular accretion
as proposed by Pringle (1996), and the Bardeen-Petterson
effect. It is shown that the first two processes can cause
noncircular accretion that can produce nonaxisymmetric
drag. The disk warping due to the Bardeen-Petterson effect
may also be important for radiation drag provided that the
outer disk extends to ∼ 104 Rg .

There should be variability in electromagnetic radiation
from the jet as asymmetric distribution of disk emission
is temporally modulated. For a BH binary with typical
parameters, the time scale is about ≥Porb ≈ 280 yr, too
long for the variability to be easily observable directly.
However, variability due to the line-of-sight geometrical
effects with a curved or helical jet might be observable.

Acknowledgements

QL thanks Ray Protheroe, Anita Mücke, and Peter
Biermann for useful discussions, and the referee John Kirk
for helpful comments.

References

Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature,
287, 307

Blandford, R. D. 1990, in Active Galactic Nuclei, eds. R. D.
Blandford, H. Netzer, & L. Woltjer (Berlin: Springer-Verlag),
161

Blumenthal, G. R., & Gould, R. J. 1970, Rev. Mod. Phys., 42, 237
Dermer, C. D., & Schlickeiser, R. 1993, ApJ, 416, 458
Eracleous, M., Livio, M., Halpern, J. P., & Storchi-Bergmann, T.

1995, ApJ, 438, 610
Gaidos, J. A., et al. 1996, Nature, 383, 319
Governato, F., Colpi, M., & Maraschi, L. 1994, MNRAS, 271, 317
Iping, R. C., & Petterson, J. A. 1990, A&A, 239, 221
Junor, W., & Biretta, J. A. 1995, AJ, 109, 500
Lubow, S. 1991, ApJ, 381, 259
Luo, Q., & Protheroe, R. J. 1999, MNRAS, 304, 800 (LP)
Melia, F., & Königl, A. 1989, ApJ, 340, 162
O’Dell, S. L. 1981, ApJ, 243, L147
Papaloizou, J. C. B., & Pringle, J. E. 1984, MNRAS, 208, 213
Papaloizou, J. C. B., & Pringle, J. E. 1985, MNRAS, 213, 799
Phinney, E. S. 1982, MNRAS, 198, 1109
Phinney, E. S. 1987, in Superluminal Radio Sources, eds.

Zensus, J. A., & Pearson, T. J. (Cambridge University Press),
301

Pringle, J. E. 1996, MNRAS, 281, 357
Pringle, J. E. 1997, MNRAS, 291, 136
Quinn, J., et al. 1996, ApJ, 456, L83
Reynolds, S. P. 1982, ApJ, 256, 38
Schubnell, M. S., et al. 1996, ApJ, 460, 644
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sikora, M., Sol, H., Begelman, M. C., & Madejski, G. M. 1996,

MNRAS, 280, 781
Sol, H., Pelletier, G., & Asséo, E. 1989, MNRAS, 237, 411
Thompson, D. J., et al. 1995, ApJS, 101, 259
Thorne, K. S., Price, R. H., & Macdonald, D. A. 1986, Black Holes:

The Membrane Paradigm (New Haven: Yale University Press)
Treves, A., Maraschi, L., & Abramowicz, M. 1988, PASP,

100, 427
Ulvestad, J. S., Roy, A. L., Colbert, E. J. M., & Wilson, A. S. 1998,

ApJ, 496, 196
Valtaoja, L., Valtonen, M. J., & Byrd, G. G. 1989, ApJ, 343, 47
von Montigny, C., et al. 1995, ApJ, 440, 525
Zensus, J. A. 1997, ARA&A, 35, 607


