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ABSTRACT

Context. An ability to predict calving difficulty could help farmers make better farm-management
decisions, thereby improving dairy farm profitability and welfare.Aims. This study aimed to predict
calving difficulty in Iranian dairy herds using machine-learning (ML) algorithms and to evaluate
sampling methods to deal with imbalanced datasets. Methods. For this purpose, the history
records of cows that calved between 2011 and 2021 on two commercial dairy farms were used.
Using WEKA software, four commonly used ML algorithms, namely naïve Bayes, random forest,
decision trees, and logistic regression, were applied to the dataset. The calving difficulty was considered
as a binary trait with 0, normal or unassisted calving, and 1, difficult calving, i.e. receiving any help
during parturition from farm personnel involvement to surgical intervention. The average rate of
difficult calving was 18.7%, representing an imbalanced dataset. Therefore, down-sampling and
cost-sensitive techniques were implemented to tackle this problem. Different models were evaluated
on the basis of F-measure and the area under the curve. Key results. The results showed that
sampling techniques improved the predictive model (P = 0.07, and P = 0.03, for down-sampling
and cost-sensitive techniques respectively). F-measure ranged from 0.387 (decision tree) to
0.426 (logistic regression) with the balanced dataset. However, when applied to the original
imbalanced dataset, naïve Bayes had the best performance of up to 0.388 in terms of F-measure.
Conclusions. Overall, sampling techniques improved the prediction model compared with
original imbalanced dataset. Although prediction models performed worse than expected (due
to an imbalanced dataset, and missing values), the implementation of ML algorithms can still lead
to an effective method of predicting calving difficulty. Implications. This research indicated the
capability of ML algorithms to predict the incidence of calving difficulty within a balanced dataset,
but that more explanatory variables (e.g. genetic information) are required to improve the prediction
based on an unbalanced original dataset.

Keywords: cost-sensitive technique, dairy cow, difficult calving, down-sampling, herd–cow factors,
imbalanced dataset, machine-learning algorithms, predictive models.

Introduction

Difficult calving, also known as dystocia, is one of the most important reproductive traits to 
influence dairy farm profitability and animal welfare. Difficult calving leads to longer birth 
interval (Deka and Das 2021) and increased open days (Montazeri-Najafabadi and Ghaderi-
Zefrehei 2021), decrease in longevity (Ghavi Hossein-Zadeh 2016), a decline in milk lactose 
(Antanaitis et al. 2021), and an increase in the number of inseminations per conception 
(López de Maturana et al. 2007). Higher veterinary costs, premature culling and replacement 
costs are also related to difficult calving (López de Maturana et al. 2007; McGuirk et al. 2007). 
After excluding culling, veterinary, and other management costs, Mee (2004) has reported 
that reduced production (41%) is the most crucial factor of all losses due to difficult calving, 
with lower fertility (34%), and cow and calf morbidity and mortality (25%) following in 
importance. 
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Cows that experienced difficult calving are also more likely 
to suffer from other diseases such as mastitis (Juozaitienė 
et al. 2017), lameness (Malašauskienė et al. 2022), and 
delayed uterine repair (Hiew et al. 2016), and overall wellbeing 
of both calf and cow is at risk (Mee 2004). The annual wastage 
cost was estimated at up to NZ$10 286 per 100 cows in a New 
Zealand pasture-based system attributed to calving trouble apart 
from non-pregnancy, mastitis, udder problems, and injury 
or accident (Kerslake et al. 2018). Sadeghi-sefidmazgi et al. 
(2012) estimated an economic weight (economic values 
multiplied by gene expressions) of –US$1.35 and –US$0.28 
per unit of trait per calf born in a time horizon of 20 years 
for the percentage of direct and maternal calving difficulties 
per calf born in Iranian Holstein dairy cattle. 

Despite the economic and welfare importance being 
generally well understood, and relative emphasis of including 
calving difficulty in selection indices (Mee 2008), a significant 
percentage of dairy cattle in different countries still requires 
assistance during partition, ranging from moderate (e.g. 
20.5% in Italian Holstein cows (Probo et al. 2022) and 19.9% 
in Irish dairy herds (Fenlon et al. 2017)) to considerable 
assistance (5.9% in Ireland; Fenlon et al. 2017). A possible 
solution to overcoming the difficult calving problem might 
be to predict its probability on the basis of the associated 
factors. The prediction of calving difficulty would help farmers 
to introduce better breeding, calving, and culling management. 
Furthermore, according to the high correlation between 
difficult calving and stillbirth (Eriksson et al. 2004), calf loss 
might be reduced if difficult calving is predicted in advance. 

Several factors have been identified as risk factors for 
difficult calving. They can be grouped into (1) maternal factors 
including parity (De Amicis et al. 2018), difficult calving 
experience at previous calving (Mee et al. 2011), body 
condition score (BCS), age of dam at birth, milk production, 
calving interval (Zaborski et al. 2014) and length of gestation 
(De Amicis et al. 2018), (2) factors related to the calf, 
including birth type (Weldeyohanes and Fesseha 2020), calf 
sex, and weight (De Amicis et al. 2018), and (3) factors related 
to the sire such as the type of inseminated sperm (Norman 
et al. 2010). 

Season of birth, year of birth, and herd are other factors 
affecting calving difficulty according to Atashi et al. (2012). 
All these herd–cow parameters can be used to predict the 
likelihood of calving difficulty. Numerous methods, mostly 
based on logistic models (Johanson and Berger 2003; Bureš 
et al. 2008; Mee et al. 2011), have been developed to 
predict calving difficulty. Machine-learning (ML) algorithms 
are other useful tools to predict complex traits such as calving 
difficulty. The recent widespread use of these algorithms has 
been attributed to their ability to successfully classify unknown 
samples, modify and handle large datasets with missing 
values, and their robustness and flexibility in classification 
and prediction, particularly in non-linear systems (Sampson 
et al. 2011; Shahinfar et al. 2014). The maximum coeffici-
ent of determination for ML methods was 0.92 and for 

regression methods it was 0.77, which indicates that 
machine learning has been able to obtain a better relation-
ship between independent and dependent variables (Baaken 
and Hess 2021). 

Although ML algorithms have been widely used for 
livestock research such as prediction of abortion (Keshavarzi 
et al. 2020), insemination outcomes (Shahinfar et al. 2014; 
Hempstalk et al. 2015), and milk yield and composition 
(Dallago et al. 2022), there have been few attempts to 
evaluate the predictive ability of calving-difficulty models 
by using ML algorithms (Fenlon et al. 2017). A series of 
studies identified unassisted and difficult calving for Polish 
Holstein-Friesians with classification trees, support vector 
machines, neural networks, and generalised linear models 
(Zaborski and Grzesiak 2011; Zaborski et al. 2014, 2016). 
However, there is no study predicting calving difficulty in 
Iranian dairy cows by using ML algorithms. Overall, the 
incidence rate of calving difficulty ranges from 1.5% to 22.0% 
worldwide (Mee 2008; Vincze et al. 2018), indicating a level 
of imbalance for this trait. This is where most ML algorithms 
would be expected to work best when there are approximately 
equal numbers of samples in each class. That is because most 
algorithms aim to maximise accuracy and minimise errors 
(Fernández et al. 2018). Therefore, this study was conducted 
to employ a range of ML algorithms to predict the likelihood 
of calving difficulty in Iranian dairy herds and to assess the 
performance of sampling techniques to deal with an imbalanced 
dataset. 

Materials and methods

Data collection and trait definition

The cow-history records of two commercial dairy farms that 
calved between 2011 and 2021 were collected. Independent 
variables related to calving difficulty, including herd, parity 
number, milk yield, calving date, dry period, calving 
interval, calving status, birth type, gestation length, BCS, calf 
sex, calf bodyweight, and calving season were recorded. Data 
were edited using R (R Core Team 2022) and SQL Server 
Management Studio (Microsoft 2012). Cows with missing 
parity number, calving dates, or calving status were removed 
from the original dataset. Only cows of parity of 2 to ≤6 (cows 
in parity >6 were considered as 6) were used. The final edited 
data included 14 543 records. Calving difficulty was considered 
as binary trait, with 0 representing normal or unassisted 
calving, and 1 representing difficult calving, i.e. receiving 
any help during parturition, from farm-personnel involve-
ment to surgical intervention. The average rate of difficult 
calving was 18.7%. The definition of all used traits is presented 
in Supplementary material Table S1. The explanatory variables 
used to predict the calving difficulty in this study are presented 
in Table 1. 
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Table 1. Description of features used to predict the calving difficulty in Iranian dairy cows.

No. Feature Type Level Minimum Maximum Mean ± s.d. Missing value (%)

1 Calving difficulty Binary 2 0 1 – 0

2 Calving status Binary 2 0 1 – 0

3 Birth type Binary 2 0 1 – 0

4 Previous difficult calving Binary 2 0 1 – 1.95

5 Herd Nominal 2 1 2 – 0

6 Parity number Nominal 5 2 6 – 0

7 Calf sex Nominal 3 1 3 – 2.67

8 Calving season Nominal 4 1 4 – 0

9 Gestation length (days) Numeric – 261 294 276.20 ± 4.90 0

10 Calving interval (days) Numeric – 305 700 407.40 ± 73.77 0

11 Milk yield (305 days) Numeric – 5389 19 501 12630.0 ± 2054.90 0.06

12 Dry period (days) Numeric – 4 200 63.93 ± 26.30 0

13 Calf bodyweight (kg) Numeric – 22 60 41.39 ± 3.35 2.99

14 Body condition score Numeric – 1.5 5 3.38 ± 0.44 17.32

s.d., standard deviation.

Machine-learning algorithms

Four distinctly different machine-learning algorithms were 
used to predict the likelihood of calving difficulty. These were 
decision trees (DT), naïve Bayes (NB), random forest (RF), and 
logistic regression (LR). A summary of the performance 
characteristics of these algorithms is given below. 

Decision trees (DT)
DT is a decision support tool with tree-shaped structures 

that chooses features on the basis of their level of informa-
tion. Selection and testing of features is first undertaken at 
the root of the trees, while testing for other attributes is 
conducted in the subordinate nodes. The criteria for choosing 
which attribute to test at each node is based on the information-
theoretic heuristic of minimising entropy (McQueen et al. 
1995). 

Naïve Bayes (NB)
NB is one of the simplest machine-learning algorithms 

following Bayes’ rule, assuming that all features are indepen-
dent (Friedman et al. 1997). The posterior probability for a 
variable C is based on the features f1,.., fn, where n is the 
number of features that can be calculated by multiplying 
the probabilities of every feature in each class (Murty and 
Devi 2011). 

Random forest (RF)
A random forest is a type of ensemble method where 

multiple classifiers are trained using bootstrap samples from 
the training set and a random subset of features is used for 
generating each of these classifiers (Breiman 2001). In 
contrast to bagged decision trees, which also use randomly 

selected subsets for each tree, the RF algorithm selects a 
random subset of features from the available pool for each 
split in the tree during the training phase (Hempstalk et al. 
2015). 

Logistic regression (LR)
LR relates the independent variables to the probability 

of each category in the dependent variable. Despite the 
limitations of linear regression being unable to produce a 
probability between 0 and 1, as well as violating the assump-
tion of independence and normal distribution of errors when 
dealing with categorical and binary variables, LR handles this 
by transforming the target variable, which is then approxi-
mated using weights, much as linear regression does. 
Maximising the log-likelihood determines the optimal weights 
for the model (Hempstalk et al. 2015; Witten et al. 2017). 

Prediction model

The analysis was performed using WEKA Machine Learning 
Workbench (Witten et al. 2017) to predict the likelihood 
of calving difficulty. A percentage method was used to 
randomly divide the original dataset into two subsets, namely, 
a training and a test dataset (at a ratio of 70:30), so that the 
rate of difficult calving in each subset was equal to the original 
one, i.e. 18.7%. In this study, two methods of down-sampling 
and cost-sensitive techniques were used to balance the 
original dataset and to improve the prediction method. 
SpreedSunSample of the filter group in WEKA (Witten et al. 
2017) was used for down-sampling the majority class of the 
response variable. The cost-sensitive method moves the 
threshold towards the lower or minor classes to increase 
the error cost for the lower class in which less error occurs 
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(Jabeur et al. 2020). In this study, false negative on the cost 
was considered for false negative on the higher score 
(difficulty calving). Finally, three datasets, namely (1) original, 
including herd–cow information, (2) down-sampled dataset 
based on the original dataset, and (3) cost-sensitive dataset 
based on the original dataset, were available for the predic-
tion model. 

Model evaluation

So as to identify the best predictive model for calving 
difficulty, each model was evaluated in terms of its own 
specific predictive ability. Performance comparisons have 
commonly been based on graphical performance assessments 
(i.e. receiver operating characteristic (ROC) curve and 
prediction-recall curve), which have also been applied to 
imbalanced datasets in recent years (Saito and Rehmsmeier 
2015). Other parameters that have been recommended for 
the evaluation of the performance of predictive models for 
imbalanced datasets are the F-measure, weighted area 
under the curve (AUC), and Matthews correlation coefficient 
(Bekkar et al. 2013). Statistically, accuracy is not an appro-
priate measure of the performance of a prediction model 
when the dataset is imbalanced (Bekkar et al. 2013). In this 
study, the AUC, F-measure, and graphical performance assess-
ments were used to evaluate the performance of different 
models, and algorithms. The AUC was also examined 
because it is still widely used despite reports that it does 
not always perform well for imbalanced datasets (Briggs 
and Zaretzki 2008). Comparisons were presented on the basis 
of the original scales as means ± s.d., with an acceptable 
significant difference when P < 0.05. Plots were drawn in 
the R environment (R Core Team 2022). 

F-measure is a measure of the accuracy of a test. It is 
calculated from the precision or positive predictive value 
and recall or true positive rate, as follows: 

2 × Precision × Recall
F − measure = 

Precision + Recall 

TP TPwhere Precision = and Recall = where,TP+FP TP+FN , 
TP = true positive, FN = false negative, FP = false positive 
and TN = true negative. 

Results

Prediction model of calving difficulty based on
herd–cow factors

The incidence rate of difficult calving was 18.7%, presenting 
an imbalanced dataset. For instance, using the RF algorithm in 
this study, calf bodyweight and calving interval emerged as 
the highest rankings for predicting the incidence of calving 
difficulty (Table 2). 

Table 2. The ranking of the most important predictors for calving
difficulty in Iranian Holstein cows derived using the random forest
algorithm.

Rank Impurity decrease Feature

1 0.38 Calf bodyweight

2 0.38 Calving interval

3 0.34 Calf sex

4 0.34 Gestation length

5 0.34 Dry period

6 0.33 Milk yield (305 days)

7 0.30 Parity number

8 0.28 Calving season

9 0.25 Body condition score

10 0.25 Previous difficult calving

11 0.23 Herd

12 0.13 Birth type

13 0.12 Calving status

Results before data processing to counter
imbalance

Four machine-learning algorithms (decision trees, random 
forest, logistic regression, and naïve Bayes) were used to predict 
the calving difficulty. The classification accuracy of the 
predictive models ranged from 82.98% to 83.33%. The 
performance (in terms of F-measure and AUC) of different 
algorithms to predict the calving difficulty on the basis of the 
original dataset is shown in Fig. 1. On the basis of our finding, 
ML algorithms did not perform as expected to predict the 
likelihood of calving difficulty (Fig. 1). The greatest value 
for F-measure with the original dataset was achieved with naïve 
Bayes, whereas the logistic regression recorded the lowest value 
(0.388 vs 0.350; Fig. 1). The average value of AUC for different 
ML algorithms was 0.685, which ranged from 0.654 (decision 
trees) to 0.701 (logistic regression; Fig. 1). 

Va
lu

e 

Fig. 1. F-measure and the area under the curve (AUC) for different
algorithms within the original dataset to predict calving difficulty
in dairy cattle.
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Improving prediction model with different
sampling techniques

The two sampling techniques used to deal with imbalances in 
the original dataset improved the predictive model in terms of 
F-measure (P = 0.07 and P = 0.03, for down-sampling and 
cost-sensitive methods; Table 3). An average difference of 
0.031 was seen between the F-measure of the original 
model and those of the down-sampling and cost-sensitive 
methods, while AUC value was not changed by sampling 
techniques (Table 3). The difference between two sampling 
techniques was not statistically significant (P = 0.18, Table 3), 
although down-sampling did numerically improve the 
performance of the predictive model (F-measure = 0.406 ± 
0.016 vs F-measure = 0.391 ± 0.006, Table 3) compared with 
the cost-sensitive method. ROC curve analysis illustrated that 
the sampling methods had almost no effect on improving the 
prediction of calving difficulty (Fig. 2). 

Table 3. The performance evaluation of different models to predict
calving difficulty on the basis of F-measure and area under the curve
(AUC).

Parameter Paired comparisons (mean + s.d.)A P-value

Original Down-sampling Cost-sensitive
dataset

F-measure 0.367 ± 0.017 0.406 ± 0.016 – 0.07

0.367 ± 0.017 – 0.391 ± 0.006 0.03

– 0.406 ± 0.016 0.391 ± 0.006 0.18

Area under 0.685 ± 0.021 0.677 ± 0.036 – 0.40
curve 0.685 ± 0.021 – 0.677 ± 0.037 0.42

– 0.677 ± 0.036 0.677 ± 0.037 0.91

AResults are from the imbalanced testing dataset.

Performance of the algorithms using different
dataset

The performance of the four algorithms was evaluated in 
terms of AUC, and F-measure values for different sets of data 
are reported in Table 4. Figs 3, 4 demonstrate the precision-
recall plots and ROC curves of these four algorithms with 
two sampling techniques. All algorithms showed considerable 
improvement in their productive performance with sampling 
techniques, as shown in their F-measure; however, AUC did 
not influence considerably (Table 4). These algorithms also 
showed similar results for different sampling techniques as 
shown by the analyses of precision-recall curve (Fig. 3) and 
ROC curves (Fig. 4). 

Logistic regression and naïve Bayes were the two best 
methods to predict calving difficulty on the balanced dataset 
using a down-sampling method in terms of F-measure (0.426 
and 0.410 respectively) and the AUC (0.705 and 0.692) in this 
study (Table 4). However, using the cost-sensitive method, 
naïve Bayes and DT were the first two algorithms in terms 
of their ability to predict the calving difficulty (Table 4). 

Discussion

Prediction model of calving difficulty based on
herd–cow factors

Using the RF algorithm, calf bodyweight and calving interval 
ranked highest for predicting the incidence of calving diffi-
culty. Fenlon et al. (2017), using a neural network machine-
learning model, reported that second parity, BCS at calving, 
and parity greater than three were the most important factors. 
However, in the same study, BSC, calving interval, and pre-
dicted transmitting ability of maternal calving difficulty were 
the highest effective  factors when analysed via  the RF algorithm  
(Fenlon et al. 2017). A study by Zaborski et al. (2014), using 

Fig. 2. Comparing the performance: area under the curve (ROC) of two algorithms of
(a) logistic regression, and (b) random forest to predict the calving difficulty with different
datasets. All plots were drawn on the basis of the results from testing dataset.
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Table 4. F-measure and the area under the curve (AUC) for different algorithms within different sets of data to predict calving difficulty in dairy
cattle.

Algorithm Original datasetA Down-samplingA Cost-sensitiveA

F-measure AUC F-measure AUC F-measure AUC

Naïve Bayes 0.388 0.695 0.410 0.692 0.400 0.695

Logistic regression 0.350 0.701 0.426 0.705 0.391 0.701

Random forest 0.356 0.690 0.402 0.689 0.384 0.692

Decision tree 0.375 0.654 0.387 0.624 0.392 0.621

AThe original dataset included herd–cow factors, and the sampling methods were implemented on the original dataset.

Fig. 3. Comparison of different machine-learning algorithms based on precision-recall curve for
predicting calving difficulty in cows for (a) down-sampling method, and (b) cost-sensitive method.
All plots were drawn on the basis of the results from the testing dataset.

Fig. 4. Comparison of different machine-learning algorithms based on area under the curve
(ROC) for predicting calving difficulty in cows for (a) down-sampling method, and (b) cost-
sensitive method. All plots were drawn on the basis of the results from the testing dataset.

boosted classification trees, showed that calving interval was gestation length to be the most effective predictors of 
the most important key factor for the prediction of calving calving difficulty (Zaborski and Grzesiak 2011). Some years 
difficulty. This is in accord with our findings, albeit with a later, they advocated calf sex as the most influential predictor 
different ML algorithm. However, in previous research, but for cows by using other artificial neural networks (Zaborski 
using a neural classifier, they had found calving season and et al. 2018). 
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Along with calf sex, dry period and gestation length ranked 
second in the current study (see Table 2). Length of pregnancy 
has previously been reported as a risk factor for calving 
difficulty. Uematsu et al. (2013) found that the incidence rate 
of difficult calving in those cows that were pregnant for 
more than 301 days or less than 270 days was higher (odds 
ratio = 1.033, and 1.124 respectively) than in cows with a 
gestation length between 281 and 290 days. Probo et al. 
(2022) reported a probability of 1.22 for difficult calving 
for cows with a longer gestation length, and he also noted 
that gestation length and birth weight include direct maternal 
genetic components, which, in turn, provide additional 
information for predicting breeding value. 

Evaluation of herd–cow factors as predictors of
calving difficulty

The current study is based on an original, highly imbalanced 
set of data collected over 10 years from two commercial dairy 
farms in Iran. ML algorithms did not perform very well 
(in terms of F-measure) to predict calving difficulty. Similar 
to this study, Fenlon et al. (2017) reported a poor perfor-
mance of ML algorithms to predict calving difficulty on an 
imbalanced dataset. They found 0%, 4.44%, and 5.26% 
for F-measure when conducting decision trees, multinomial 
regression, and random-forest ML algorithms on test data to 
predict difficult calving. One reason for these results might 
be the highly imbalanced nature of the dataset. This leads 
to biased classification towards the majority class and 
misclassification of minority cases, since ML algorithms build 
classification models by maximising accuracy (Das et al. 
2018). In addition to the imbalance in the dataset, any poor 
results might be attributed to the high proportion of missing 
values for BCS, which is a critical risk factor for calving 
difficulty since body size is one of the main maternal factors 
that impose calving difficulty. In addition, cows that did not 
receive an appropriate diet and have a low BCS are more 
susceptible to difficult births, while, at the same time, cows 
that have been fed excessively, will likely have a higher 
birth-weight calf (Boakari and Ali 2021) and more fat deposi-
tion in the pelvic area, leading to difficult calving (Zaborski 
and Grzesiak 2011; Boakari and Ali 2021). 

Balancing the dataset, success with the processed
dataset

It has been reported that the adoption of sampling techniques 
is an effective way to deal with imbalanced datasets (Dubey 
et al. 2014). Tan et al. (2019) suggested that the use of a 
random forest with an up-sampling method was able to 
solve the classification imbalance problem and improve the 
performance of the algorithm. In Keshavarzi et al. (2020) 
study to predict abortion in Iranian Holstein cows, up-sampling 
and down-sampling methods were used to balance the dataset, 
and both sampling techniques significantly (P < 0.05) 

improved the prediction models. For the present study, two 
resampled datasets were generated by applying the down-
sampling or the cost-sensitive techniques to the original dataset. 
Collectively, these three sets (one original plus two modified) 
were used to predict the likelihood of calving difficulty. There 
were significant improvements in the prediction models with 
both sampling techniques used to handle the imbalance in the 
original dataset (in terms of F-measure and AUC). 

A cost-sensitive algorithm is another common method to 
deal with the problem of imbalanced classes (He et al. 2021). 
However, cost-sensitive algorithms are less likely to be imple-
mented properly and often need to be reclassified because of 
unknown misclassifications. This is the main reason for 
preferring techniques such as up-sampling and down-sampling 
instead of cost-sensitive learning methods (Weiss et al. 2007). 
Despite their efficacy in handling imbalanced datasets, 
resampling techniques also have disadvantages as they remove 
potentially useful data through down-sampling and overfitting, 
by making exact copies of existing samples while oversampling 
(Weiss et al. 2007). Additionally, oversampling increases the 
number of training examples, making learning more time-
consuming (Weiss et al. 2007; Dubey et al. 2014). Any resam-
pling of a dataset may also affect the ranking of features and 
their potential effect on the resulting variables. On the 
contrary, Chawla (2010) reviewed various studies that have 
declared the better performance of up-sampling across the 
various possible resampling techniques. 

General performance of different algorithms, and
limitations of imbalanced dataset

Using a down-sampling method, logistic regression and naïve 
Bayes were the most accurate methods to predict calving 
difficulty. However, naive Bayes and decision tree were the 
most effective prediction methods to predict calving difficulty 
with the cost-sensitive method. In contrast with our study, 
Zaborski et al. (2018) found a low performance for the 
naïve Bayes algorithm in predicting difficult calving. Fenlon 
et al. (2017) found that the decision trees algorithm had 
the lowest AUC (0.64) and multinomial regression showed 
the best performance among ML algorithms with an AUC of 
0.79 and low true positive rate (2%). Zaborski et al. (2018) 
indicated that logistic regression with 100% true negative 
rate, and 96% accuracy, although zero true positive rate, 
showed good performance when applied to a cost-sensitive 
balanced dataset. In another study, Zaborski et al. (2014) 
detected RF as an unsuitable algorithm for predicting calving 
difficulty, with 84% true positive rate, 60% accuracy, and 
48% true negative rate. However, Fenlon et al. (2017) 
advocated for the RF algorithm in the prediction of difficult 
calving (Score 3), with a low true positive rate (2%), high 
accuracy (75%), and high precision (100%). Performing 
decision trees, Zaborski et al. (2016) could not predict even 
one calving difficulty event correctly. In Keshavarzi et al. 
(2020) to predict abortion, the Bayes algorithms (naïve Bayes 
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and Bayesian network) showed no effects with the balanced 
or imbalanced type of data, while trees (DT and RF), and 
functions (LR and Neural network) performed better with 
balanced datasets. Overall, there is still considerable uncertainty 
about which type of sampling technique is best suited to each 
algorithm. 

Conclusions

In this study, we addressed (1) the most important predictors 
for calving difficulty, (2) the performance of sampling 
techniques to handle the imbalanced dataset, and (3) the 
performance of different ML algorithms within different 
datasets. The most important variables for predicting calving 
difficulty were calving interval and calf bodyweight, indi-
cating areas in which appropriate management programs 
would help producers reduce calving difficulty. Both sampling 
techniques used to handle the imbalance in the original dataset 
improved the predictive model. It is concluded that the down-
sampling method significantly improved the performance of 
the algorithms and that among those that we used, decision 
tree with a true positive rate (TPR) of 59.2% had the best 
performance for predicting the rate and/or extent of calving 
difficulty. However, without down-sampling the original 
dataset, no significant performance difference was observed 
among the different algorithms. Considering that the perfor-
mance of the decision tree was the highest (in terms of TPR) 
for down-sampled data and the computational load of a 
decision tree is less, it is suggested that the decision tree 
might be used when time is critical, or the amount of data 
is large. In general, even though it is complicated to work 
with reproductive disorders that have a low frequency 
(i.e. with imbalanced datasets), the prediction of calving 
difficulty with ML algorithms can be a way to improve the 
farm profitability as well as animal welfare. 

Supplementary material

Supplementary material is available online. 
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