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Abstract
Context.Genomic profiles are the only information source that can uniquely identify an individual but have not yet

been strongly considered in the context of paddock to plate traceability due to the lack of value proposition.
Aim.The aim of this study was to define the minimum number of single nucleotide polymorphisms (SNP) required to

distinguish a unique genotype profile for each individual sample within a large given population. At the same time, ad
hoc approaches were explored to reduce SNP density, and therefore, the size of the dataset to improve computing
efficiency and storage requirements while maintaining informativeness to distinguish individuals.

Methods. Data for this study included two datasets. One included 78 411 high-density SNP genotypes from
commercial Angus cattle and the other 2107 from a research data (1000-bull genome data). In a stepwise approach,
different-size SNP panels were explored, with the last step being a successive removal resulting in the smallest set of
SNPs that still produced the maximum number of unique genotypes.

Key results. First study that has demonstrated for large datasets, that ultra-small SNP panels with 20–23 SNPs can
generate unique genotypes for up to ~80 000 individuals, allowing for 100% matching accuracy.

Conclusions. Ultra-small SNP panels could provide an efficient method to approach the large-scale task of the
traceability of beef products through the beef supply chain.

Implications. Genomic tools could enhance supply-chain traceability.
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Introduction

A reliable traceability system for animals and meat products
can identify individuals and processed products along with
their origin throughout the supply chain, from the farm-gate to
the consumer (McKean 2001), and facilitate food safety and
quality assurance to enhance consumer confidence (Nicoloso
et al. 2013). For meat traceability systems, radio frequency
identification, genomic information and fingerprints of
isotopes, and mineral and organic components are all
methods that enable the identification of individual animals
and authentication of origin (Zhao et al. 2020). Each approach
has its unique limitations in terms of practicality and
reliability (Zhao et al. 2020).

Genomic information is one application that can be used
from paddock to plate traceability and it is the only tag-less
approach that can link a piece of meat to an individual with
high accuracy. Although it is unlikely to be used as a routine

tool for track and trace due to the cost and logistics of testing,
genomic information would complement paper-based or
electronic radio frequency identification records that track
the movement of animals through the supply chain and
could verify the identity of an individual or piece of meat
at any point, if required. In combination with fingerprints of
isotopes, minerals and organic compounds, product origin can
be authenticated from region to farm level and narrowed down
all the way to the animal level. The advantage of using
genomic information is that in addition to tracing animals
through the supply chain, commercial carcass records could be
linked into genetic evaluation for selection purposes, which
might justify the cost of genotyping and analysis.

Short-sequence repeats and single-nucleotide
polymorphisms (SNPs) have been most commonly explore
for traceability purposes (Zhao et al. 2020). Single nucleotide
polymorphisms are mostly biallelic and are, therefore,

CSIRO PUBLISHING

Animal Production Science, 2021, 61, 1796–1800
https://doi.org/10.1071/AN21123

Journal compilation � CSIRO 2021 Open Access CC BY-NC-ND www.publish.csiro.au/journals/an

Special Issue: AAABG 2021

https://orcid.org/0000-0002-1942-8539
https://orcid.org/0000-0002-3072-1736
https://orcid.org/0000-0002-3018-3640
https://orcid.org/0000-0002-4681-9404
mailto:sonja.dominik@csiro.au
http://creativecommons.org/licenses/by-nc-nd/4.0/


individually less informative than are short-sequence repeats,
which present a greater allelic diversity. However, SNPs are
abundant throughout the genome and have become the most
commonly used genetic marker in livestock applications due to
their automated genotyping. A small number of SNPs can
provide a large amount of genomic information to distinguish
individuals. With one SNP, three unique genotype profiles are
possible (AA, AB, BB or codified 0, 1, 2) and with n number of
SNPs, 3n unique profiles are possible. So, with 20 SNPs with
common alleles it should be possible, albeit incredibly
unlikely, to generate 320 = 3 486 784 401 unique genotype
profiles. Theoretically, this would be sufficient to uniquely
describe every individual in the Australian cattle population,
which was in 2017–2018 ~28 million head (Australian Bureau
of Statistics 2019).

A technical problem of high-density genotype data on large
numbers of individuals is the computing time to mine or
manipulate the data and perform basic queries due to the
size of the files. Codified as (0,1,2) and without spaces, a
file with genotypes of 100 000 animals across 50K SNPs will
take 5 GB of memory. Working with a file of that size is
complex and time-consuming.

The objective of the present study was to establish the
smallest possible set of SNP markers from high-density
genotypes of a given population that yields a unique
genotype profile for each individual sample. This is
equivalent to assessing on the basis of only a small set of
SNPs, with 100% accuracy, whether a given unique
individual is present in a database. At the same time, it is
explored in ad hoc approaches how the dataset can be reduced
in size for efficient file manipulation, while maintaining
informativeness of the SNP subset. The discussion
elaborates on the potential application of a genomic tool for
supply chain traceability. The objective was to find the
minimum number of SNPs required to establish unique
genotype profiles for all animals in a specific population.
Approaches to reduce the number of SNPs to make the
procedures computationally more efficient and to finally
yield a small subset of SNPs for unique identification.

Materials and methods

Two datasets of SNP genotypes were used for the study, a
research dataset, namely the 1000-bull genome dataset, and
a commercial Angus dataset. The approach to arrive at the
minimum number of SNPs was somewhat different because
the research dataset was multi-breed, whereas the commercial
dataset was from one breed only.

1000-bull genome data
The first dataset was a research dataset, which was Run 7 of the
‘1000 Bull Genome Project’ (Hayes and Daetwyler 2019). It
provided a genetically heterogeneous dataset, with multiple
breeds and cross-bred animals. The full dataset contained
3817 animals, but after selecting only breeds with at least
20 animals, and individuals with genome sequence coverage of
at least 5· and heterozygosity of at least 2.5%, a total of
2107 cattle from 17 of the original 172 breeds remained
(Reverter et al. 2020). After removal of one repeat record,
2106 animals remained in the dataset for analysis. For each
animal, a total of 40 525 757 SNP genotypes was available. To

reduce the linkage disequilibrium, only every 10th SNP was
included and only if they had <5% missing genotypes and a
minor allele frequency of >5% (Reverter et al. 2020). This
greatly reduced the number of SNPs, resulting in a final dataset
of 1 001 234 informative SNPs for the purpose of the study.
After computing summary statistics for the 1 001 234 SNPs
across the 2106 animals, a first step aimed at further rapid
reduction of SNPs that are still informative to generate 2106
unique genotype profiles, which would also reduce the
computing time required to process the data. Nine scenarios
with different combinations for thresholds for the number of
missing genotypes (0, 2%, 3%, 5% and 10%), and frequency of
Alleles A (P) and B (Q; 1%, 5%, 10%, 15% for both), were
applied (Table 1). For example, Scenario 1 applied 10% for the
number of missing genotypes and 5% for P and Q, whereas
Scenario 2 applied 10% for all three criteria. The scenario that
yielded the minimum number of SNPs and maximum unique
genotype profiles created the dataset of 62 031 SNPs for use in
the following step.

In the second step, the average euclidean distance (AED) of
allele frequencies was calculated across the 62 031 SNPs and
17 breeds. The AED is commonly used to describe spatial
distances but can also be applied to describe genetic
distance and serve as a measure of SNP across-breed
informativeness. We used the AED of allele frequencies
among the 17 breeds and then averaged across all possible
breed pairs:
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where s indicates the SNP investigated (s = 1–62031); B = 17
(number of breeds) and fjs indicates the frequency of the
second allele of the sth SNP in the jth breed in the
population; fj’s indicates the frequency of the second allele
of the sth SNP in the second breed of the pair that is being
compared.

From the 62 031 SNPs, based on maximum AED and
approximately the same distance (equidistance) across the
genome, the ‘adequacy’ of 200 SNP panels of an increasing
density from 5 to 1000 was explored, wherein ‘adequacy’ was
defined in terms of how many unique genotype profiles they
generate. The maximum number of unique genotypes that

Table 1. 1000-bull genome dataset: resulting number of SNPs and
unique genotype profiles (Unique Geno) after applying varying
thresholds on percentage of missing genotypes (Miss), percentage
of the frequency of Allele A (P) and percentage of the frequency of

Allele B (Q)

Scenario Miss (%) P (%) Q (%) SNP Unique Geno

1 10 5 5 472 427 2106
2 10 10 10 367 408 2106
3 5 10 10 174 700 2106
4 5 15 15 130 297 2106
5 0 10 10 6504 2104
6 0 5 5 12 175 2104
7 0 1 1 12 493 2104
8 2 15 15 34 683 2105
9 3 15 15 62 031 2106
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potentially can be achieved is equal to the number of animals
in the dataset (n = 2106), assuming there are no clones or
monozygotic twins in the dataset. None of the panels resulted
in the required 2106 genotypes. Hence, in the third step, 1000
random panels, each with 35, 135, 430, 675, 1000, 1500 and
2000 SNPs, were explored. The panel sizes represent nominal
proportions of the 2106 SNPs that have resulted from previous
searches of the 1 001 234 SNPs.

As the last step, the SNPs from a random panel that generated
2106 unique genotype profiles were subjected to a successive
reduction of SNPs. Thismeans that thefirst SNPwas removed. If
the remaining SNPs still produced 2106 unique genotype
profiles, the SNP was removed, and the next SNP tested. If
the number of unique genotype profiles reducedwith the removal
of a SNP, the SNP remained in the data.

Australian Angus dataset
The second dataset was an industry dataset obtained from
Angus Australia containing only Angus cattle. The data
included imputed genotypes for 45 364 SNPs scattered
across all the 29 autosomal chromosomes of 78 411
Australian Angus cattle. Genotype data for imputation
originated from different density chips. The data from all
chips were combined to represent the equivalent of a
medium-density chip as a reference panel of 49 754 animals
(Aliloo and Clark 2021). Imputed genotypes for individuals
from a 10-fold cross-validation using the real genotypes as
reference were correlated with real genotypes to obtain the
imputation accuracy, which averaged 0.9878 across all
animals (Aliloo and Clark 2021). For the Australian Angus
data, AED metrics were not applied, since all animals
originated from a single breed. It could have been applied
across herds, but the minimum record requirements would
have reduced the number of herds. Hence, after running
summary statistics, the first filtering step of the 45 364
SNPs was based on filters that were imposed on P, Q and
Hardy–Weinberg equilibrium (HWE). There were no missing
genotypes because the dataset was imputed. Five threshold
scenarios were investigated, excluding SNPs for all three
characteristics, P, Q and HWE, starting at 0.20 and
increasing to 0.45 in incremental steps of 0.05. At each
step, the number of unique genotype profiles was
established. The potential maximum number of genotypes is
78 411, which equals the number of animals in the dataset. The
reduction of SNPs on the basis of thresholds for P, Q and HWE
increased the informativeness of the remaining SNPs and, at
the same time, achieved greater computational efficiency
through a smaller file size.

After arriving at 0.45 for P and Q, further reductions in SNP
numbers were achieved by selecting subsets of SNPs at regular
intervals, ranging from every 3rd to every 150th SNP. At each
reduction, the number of unique genotype profiles was
established, and reductions were continued if 78 411 unique
genotype profiles remained. The smallest subset of SNPs from
this step was subjected to the last reduction step.

As the last step, the remaining SNPs underwent a
successive reduction, using the same procedure that was
applied to the 1000-bull genome data. One SNP was
removed at a time. If the remaining SNP produced 78 411
unique genotype profiles, the SNP was excluded, if the number

of unique genotype profiles reduced, the SNP was kept in the
data. The successive reduction was also undertaken
backwards, starting at the other end of the file.

Results and discussion

1000-bull genome data

The initial analytical steps had two purposes; the first one was
to explore approaches to understand the possible sizes of SNP
panels for uniqueness and, the second to reduce the original
number of over 1 million SNPs to improve the computational
efficiency of the analytical processes. Applying maximum
frequency thresholds of 15% for P and Q substantially
reduced the number of SNPs from 1 million to 62 031 (or
~95% reduction; Table 1, Scenario 9). Applying a zero
threshold on missing genotypes caused an even greater
reduction, but did not yield the envisaged 2106 unique
genotypes (Table 1, Scenarios 5–7). The reduced number of
62 031 SNPs from Scenario 9 provided the genotype data for
the next steps.

From the 62 031 SNPs, the SNP panels of sizes of 5–1000
SNPs, selected on equidistance and maximum AED, were
explored for their ability to generate maximum numbers of
unique genotypes. The combination of maximum AED and
equal spacing provided a good guide as to how small the
‘desired’ panel could be. For instance, 2086 of 2106 possible
unique genotype profiles (99%) were obtained with 35 SNPs.
This percentage increased to 99.5% and 99.75% with 135 and
430 SNPs respectively. Only one sample run of SNPs was
available for each panel, and not even 1000 SNPs yielded the
2106 unique genotypes required to represent the full
complement of unique genotypes in the population (Table 2).

In the next step, 1000 repetitions of randomly drawing 35,
135, 430, 675, 1000, 1500 and 2000 SNPs from the 62 031-
SNP dataset were investigated. Only two instances for panels
with 2000 SNPs yielded 2106 unique genotype profiles
(Table 3). These two instances are subsequently referred to
as Data2000_1 and Data2000_2.

The two datasets of 2000 SNPs that yielded 2106 unique
genotype profiles (Data2000_1 & Data2000_2) were further
reduced through the successive removal of SNPs. For
Data2000_1, the successive reduction approach yielded a

Table 2. 1000-bull genome dataset: number of unique genotypes
(Unique Geno) with an increasing number of SNP that are

equidistant and selected on maximum AED

Number of SNPs Unique Geno

5 193
10 1288
15 1705
20 2005
25 2059
30 2084
35 2086
120 2092
125 2093
990 2102
995 2102
1000 2102
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subset of only 20 SNPs that still produced 2106 unique
genotype profiles. For Data2000_2, the full complement of
2106 unique genotype profiles was achieved with 23 SNPs
after successive reduction. Just by chance, it was quite likely
that the two datasets were already subsets of different SNPs;
therefore, the successive reduction yielded different subsets of
SNPs, as indicated by the SNP ID.

Australian Angus data

The genotype and allele frequencies of the Angus population
were in HWE. A reduction of the full 45 364 SNP data to 3312
SNPs could be achieved through imposing a filtering threshold
of 45% for P, Q and HWE (Table 4). Applying maximum
thresholds still produced the maximum number of 78 411
unique genotypes. Further reductions were achieved by
selecting subsets of SNPs. When every 100th SNP was
selected, a subset of 33 SNPs still generated 78 411 unique
genotype profiles.

The resulting 33 SNPs were then subjected to a step of
forward and backward successive removal of SNPs and the
subset could be further reduced to 21 SNPs. Coincidentally,
forward and backward successive removal resulted in the same

number of SNPs. Eleven SNPs were the same, because the
initial panel to undergo the successive removal only contained
33 SNPs.

The present study demonstrated for the first time that an
ultra-small panel of ~20 SNPs can generate unique genotype
profiles for all individuals in genetically heterogeneous data of
2106 animals and in a commercial dataset of nearly 80 000
purebred Australian Angus cattle. Previous studies in cattle,
goats and sheep have shown that a small number of SNPs
ranging from 5 to 48 markers can distinguish individuals with
a high accuracy (Heaton et al. 2002; Werner et al. 2004;
Goffaux et al. 2005; Allen et al. 2010; Zhao et al. 2017).
However, none of the studies achieved 100% matching
probability because genetic markers were pre-selected from
published literature and then validated in the experimental
samples. The present study here has utilised a different
approach by mining existing high-density SNP datasets for
a minimum set of SNPs that still provides unique genotypes for
all individuals and therefore 100% matching probability. A
simulation study evaluated that at least eight SNPs are required
to obtain a 99% probability that none of the samples would be
erroneously matched, and with 25 SNPs, a probability of <1%
for a match between any of five million individuals was
achieved (Weller et al. 2006). They never used real data.
However, while the SNP set identified works well in the
current set of genotypes, it would need to be re-evaluated
to identify animals unambiguously when genotypes are added.
In particular, because the present study used imputed
genotypes (Aliloo and Clark 2021), which means that the
empirical approach used in the study to identify the SNPs
could have resulted in imputed SNPs as part of the ultra-small
SNP panel. However, the present study was exploratory and
the aim was not to establish a set of SNPs that would be
commercially applicable.

The approach taken in the study is plausible when
considering the potential application in a traceability
system. On one end, a reference database of individual
genotypes of all slaughtered cattle is required. Ideally, the
genotypes are collected early in life and with reasonable

Table 3. 1000-bull genome dataset: occurrence of the maximum
number of unique genotypes (Max Unique Geno) in 1000 reps of SNP

panels of varying size of random SNPs

Max Unique
Geno

Size of SNP panel
35 135 430 675 1000 1500 2000

2077 3 0 0 0 0 0 0
2078 8 0 0 0 0 0 0
2079 11 0 0 0 0 0 0
2080 50 0 0 0 0 0 0
2081 88 0 0 0 0 0 0
2082 119 0 0 0 0 0 0
2083 163 0 0 0 0 0 0
2084 133 0 0 0 0 0 0
2085 150 0 0 0 0 0 0
2086 103 0 0 0 0 0 0
2087 81 5 0 0 0 0 0
2088 41 11 0 0 0 0 0
2089 20 29 0 0 0 0 0
2090 15 95 0 0 0 0 0
2091 8 123 0 0 0 0 0
2092 5 194 0 0 0 0 0
2093 1 181 2 0 0 0 0
2094 1 166 3 0 0 0 0
2095 0 95 21 0 0 0 0
2096 0 58 63 6 0 0 0
2097 0 28 128 11 0 0 0
2098 0 10 186 36 0 0 0
2099 0 3 221 114 17 0 0
2100 0 2 200 229 65 5 0
2101 0 0 116 264 219 40 9
2102 0 0 47 247 336 260 135
2103 0 0 10 83 307 520 549
2104 0 0 3 9 51 161 266
2105 0 0 0 1 5 14 39
2106 0 0 0 0 0 0 2

Table 4. Australian Angus dataset: resulting number of SNPs and
unique genotype profiles (Unique Geno) after applying varying
thresholds, frequency of Allele A (P) and frequency of Allele B (Q)
and the P-value of the Hardy–Weinberg equilibrium (P-value HWE),

proceeded by a reduction of every nth SNP

Scenario P (%) Q (%) P-value
HWE

Every nth
SNP selected

SNP Unique
Geno

1 20 20 0.20 All 22 302 78 411
2 30 30 0.30 All 14 187 78 411
3 35 35 0.35 All 10 444 78 411
4 40 40 0.40 All 6873 78 411
5 45 45 0.45 All 3312 78 411
5_3 45 45 0.45 3 1104 78 411
5_10 45 45 0.45 10 331 78 411
5_20 45 45 0.45 20 165 78 411
5_100 45 45 0.45 100 33 78 411
5_125 45 45 0.45 125 26 78 410
5_150 45 45 0.45 150 22 78 406
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density, so that value can be added through multiple uses, for
example, management decisions and informed sire selection,
in addition to the use for traceability. However, a sample for
genotyping could be taken at any time while the animal can
still be identified, and the genotype linked to the animal
identification. Lower-density SNP panels could be used for
traceability and might still be useful for parentage and breed
composition, but might compromise the opportunity to add the
data to the genetic evaluation.

At the other end, a genomic tool is required that can trace
the origin of a cut of meat and match the sample to a genomic
profile in the reference database. At this point, low-density
SNP panels or even alternative technologies would be
envisaged because the only purpose is to match the sample.
This panel could be created from the genotype information in
the existing reference database, as it was in the present study
based on the existing SNP data files and was applicable only to
the population under investigation, which provides a clear
limitation for broad applicability, but a potential source of
intellectual property through branding. In many cases, the
relevant SNPs most likely would need to be re-evaluated
with a growing population of genotypes.

Admittedly, the numerical approach developed here to
achieve the ultra-small SNP panel was ad hoc and simple
in nature, when the original problem was perfectly suited to
complex optimisation techniques. Nevertheless, the study
demonstrated nicely the potential size of such a product,
and it demonstrated approaches to reduce the file size to
achieve satisfactory computational efficiency while
maintaining informative subsets of SNPs.

One of the challenges for an industry-wide traceability
system that uses genomic information is the formulation of
the value proposition for producers to genotype all slaughter
animals at a reasonably high density. Additional value could
be generated from the use of genotype data for management
purposes, such as, for example, to predict their feedlot
performance, and associated savings in feed, or to create an
arrangement with the breeders of their sires to link commercial
carcass records back to the stud to enhance genetic gains in
carcass traits.

Conclusions

Full transparency, traceability of individuals and proven
authenticity of animal products are required to maintain
consumer confidence and to maintain ‘Brand Australia’ in
the domestic and global market. Accuracy and ease of logistics
are key characteristics that underpin a system that gains
industry-wide adoption. Genomic information could be
integrated with other information such as radio-frequency
identification and geochemical and isotopic information to
verify multiple attributes of an animal, including their
production location and system, breed, and their identity.
The present study has provided a starting point for the
development of genomic products that might overcome the
computational challenges of large datasets in this context.
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