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Abstract
Context. Studies have shown that favourable genetic correlations exist between female and male fertility traits.

However, investigations regarding these correlations in Australian tropical beef cattle are limited to either pedigree or
single-breed analysis.

Aim.The study aims to use genomic information to estimate genetic parameters of six female and seven male fertility
traits measured during the first 2 years of life, in two tropical breeds.

Methods. Single-, bivariate and multi-trait models were used to analyse fertility data from Brahman (BB; 996 cows
and 1022 bulls); and Tropical Composite (TC; 1091 cows and 998 bulls) cattle genotyped with high-density single-
nucleotide polymorphism chip assay.

Key results.Heritability estimates in BB cows ranged from low (0.07 � 0.04) for days to calving at the first calving
opportunity (DC1, days) to high (0.57 � 0.08) for age at first corpus luteum (AGECL, days). In BB bulls, estimates
varied from low (0.09 � 0.05) for sperm motility (score 1–5) to high (0.64 � 0.06) for scrotal circumference (SC)
measured at 24 months (SC24, cm). Similarly, heritability estimates in TC cows were low (0.04 � 0.03) for DC1
and high (0.69 � 0.02) for AGECL. In TC bulls, the heritability was low (0.09 � 0.05) for sperm motility and high
(0.69� 0.07) for SC24. Within-sex for both breeds, blood concentrations of insulin growth-factor 1 (IGF1) measured in
cows at 18 months (IGF1c) were negatively correlated with female fertility phenotypes. In BB, across-sex, bulls’ blood
concentration of IGF1 measured at 6 months (IGF1b) was a good indicator trait for the following four female traits:
AGECL, the first postpartum anoestrus interval, age at first calving and DC1. In TC, IGF1b and percentage normal
sperm were good predictors of female fertility phenotypes.

Conclusions. The heritability estimates and genomic correlations from the present study generally support and
confirmed the earlier estimates from pedigree analyses. The findings suggest that selection for female fertility traits
will benefit male fertility, and vice versa.

Implications.Heritability estimates and genomic correlations suggest that we can select for fertility traits measured
early in life, with benefits within and across sex. Using traits available through veterinary assessment of bull fertility as
selection indicators will enhance bull and cow fertility, which can lead to better breeding rates in tropical herds.
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Introduction

In cow-calf operations, the number of calves produced per cow
in their lifetime is indicative of beef productivity and

sustainability (Johnston et al. 2014a; Zhang et al. 2014).
Increasing the number of calves to ensure enterprise
profitability is a complex challenge that involves both
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female and male fertility (Hansen 2006). Improving fertility in
both sexes will create numerous benefits across the supply
chain and contributes to the beef industry as a whole.

Female and male cattle may employ different reproductive
strategies, resulting in the evolution of sex dimorphism
(Fairbairn et al. 2007). Interestingly, since both sexes share
almost identical genomes apart from the sex chromosome,
there is a possibility that selection in one sex can result in
indirect selection on the other sex, constraining the evolution
of sexual dimorphism (Lande 1984; Poissant et al. 2010;
Pennell and Morrow 2013). It is then expected that sex-
specific genes would allow independent evolution within
sexes and genes that are expressed in both males and
females would foster similarities in both sexes (Lande
1984). Genetic correlations can be very high across sexes,
when studying traits that are homologous in both male and
female (Poissant et al. 2010). But there are obviously traits that
are not homologous. Reproductive strategies, dimorphism and
genetics form an interesting interdisciplinary field, where
researchers investigate the intra-locus sexual conflict.

After the study of Land (1973), who first reported the
interplay between male and female reproduction in
mammals, several studies in beef cattle have shown the
existence of favourable genetic correlations between bull
and cow fertility (Johnston et al. 2014b; Raidan et al.
2019). The genetic correlation between scrotal
circumference (SC) and female fertility traits justifies the
commercial use of SC in selection programs across the
world (Lunstra and Cundiff 2003; Gargantini et al. 2004).
However, investigation about sex interplay in tropical beef
cattle in Australia has been limited to either pedigree (Johnston
et al. 2014b; Jeyaruban and Johnston 2017; Johnston and
Moore 2019) or single-breed analysis (Raidan et al. 2019).
Considering the diverse range of breeds, crossbreeds and
composites that characterise the Australian beef industry,
there is a need to study the relationships between female

and male fertility in more than one breed. Therefore, the
present study aims to estimate genetic parameters for a
range of male and female fertility traits, in two tropical
beef breeds of Australia. We also discuss the implication of
these results for selective breeding.

Materials and methods

Animals and phenotypes
Institutional Animal Care and Use Committee approval was
not needed for the present study because data used were
retrieved from existing databases. Animals used in the study
were bred by the Cooperative Research Centre for Beef
Genetic Technologies (Beef CRC). These animals were
reared under a range of extensive environments at four
research stations in Queensland. The details on the routine
management, feeding regimes and health treatments have been
previously described in Johnston et al. (2009), Burns et al.
(2013) and Wolcott et al. (2014). Cows were culled only for
husbandry reasons (i.e. disease) or if they failed to wean a calf
in two consecutive years. Otherwise, they were kept for six
mating opportunities. Briefly, 2018 Brahman (BB) cattle (996
cows and 1022 bulls) and 2089 Tropical Composite (TC) cattle
(1091 cows and 998 bulls) were used for the study. The same
number of traits were studied in the two populations (six cow
traits, and seven bull traits), but the exact number of animals
recorded for each trait varied (Table 1). BB cattle are of Bos
indicus origin, while TC originated from crossing Bos indicus
and Bos taurus breeds. The breed composition of these two
populations has been previously investigated. TC breed
exhibits more genetic variation than BB (Porto-Neto et al.
2013a, 2013b). Since, breed composition can affect genetic
parameter estimates, we model the first two principal
components (PC1 and PC2) in addition to the genomic
relationship matrix (GRM) to account for the, quite varied,
breed composition in the TC breed, for all traits studied. The

Table 1. Trait description and summary statistics of cow and bull fertility traits

Trait Description Summary statistics
N Mean ± s.d. N Mean ± s.d.

Brahman Tropical Composite

Cow phenotypes
AGECL Age at detection of first corpus luteum (days) 980 750.65 ± 141.80 996 651.25 ± 120.32
PPAI Postpartum anoestrus interval (days) 618 180.37 ± 109.05 822 142.58 ± 109.88
IGF1c Cows’ blood concentration of IGF1 at 18 months of age 995 191.33 ± 89.30 1015 226.38 ± 75.69
DC1 Days-to-calving 1st breeding opportunity (days) 996 345.41 ± 48.49 1091 319 ± 37.86
DC5 Days-to-calving averaged for 5 breeding opportunities (days) 794 344.37 ± 19.23 922 329.21 ± 18.53
AFC Age at first calving (years) 944 3.23 ± 0.49 1058 3.06 ± 0.38

Bull phenotypes
IGF1b Bulls’ blood concentration of IGF1 at 6 months of age (ng/mL) 964 556.14 ± 328.96 998 615.2 ± 332.86
MAS Sperm mass activity at 24 months of age (%) 986 2.67 ± 1.01 970 2.98 ± 0.76
MOT Sperm motility at 24 months of age (%) 990 71.55 ± 20.71 970 74.89 ± 19.49
PNS Percentage normal sperm at 24 months of age (%) 938 73.71 ± 21.95 993 73.0 ± 0.21
SC12 Scrotal circumference at 12 months of age (cm) 1020 21.39 ± 2.70 998 26.5 ± 3.21
SC18 Scrotal circumference at 18 months of age (cm) 1022 26.73 ± 2.66 998 30.28 ± 2.82
SC24 Scrotal circumference at 24 months of age (cm) 1022 29.76 ± 2.82 998 31.78 ± 24.25
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use of PC1 and PC2 was not necessary for the BB herd, which
had a more uniform breed composition.

Genotypes and imputation
All animals used were either genotyped with the BovineSNP50
(Matukumalli et al. 2009) or the BovineHD (Illumina Inc.,
San Diego, CA, USA) chips. Animals genotyped with the
medium-density single-nucleotide polymorphism (SNP) panel
had their genotypes imputed up to 770 000 as described by
Bolormaa et al. (2015). Before performing imputation, all the
original SNP genotypes were remapped to the new assembly of
the bovine reference genome (ARS_UCD1.2, GenBank
assembly accession GCA_002263795.2; Rosen et al. 2020)
and were phased using Eagle software (Loh et al. 2016).
Subsequently, Minimac3 was used to impute the lower-
density genotypes for all autosome (Das et al. 2016) and
Minimac4 for the X-chromosome. The X-chromosome was
imputed after separating the non-pseudoautosomal (nPAR)
and pseudoautosomal regions (PAR) following the recent
definition of these two regions by Johnson et al. (2019).
After imputation, only SNPs with an imputation accuracy
higher than 0.8 were retained for subsequent analyses,
resulting in a dataset with 722 208 SNPs for both sexes in
the two breeds.

Genomic relationship matrix (GRM)
First, we performed quality control by excluding all SNPs with
a minor allele frequency smaller than 0.05 within breed for
each sex, before constructing the GRM. As a result, 561 080
and 562 974 genotypes remained for BB cows and bulls
respectively. In TC, 688 407 and 688 095 genotypes
remained for cows and bulls respectively. GRMs were then
constructed following Method 1 of VanRanden (VanRaden
2008) implemented in GIBBS2F90 (Misztal et al. 2002). For
the across-sex study, we merged the unfiltered genotypes for
both sexes in each breed and performed the quality control as
described above, resulting in 554 712 and 688 603 SNPs for
both BB and TC respectively. Before constructing the GRM,
we separated the X-chromosome into nPAR and PAR regions
following the boundary described by Johnson et al. (2019).
The PAR region is small, consisting of 1977 SNPs, which
were removed from the analyses. After removing PAR SNPs,
we used the genotypes of 554 712 and 686 626 SNPs for BB
and TC respectively, to build the GRM. First, we constructed a
GRM using all the SNPs in autosomes, for each breed
separately, using GCTA software (Yang et al. 2011).
Second, for the X-chromosome nPAR region, we constructed
another GRM using the specific function for the nPAR region
as specified inGCTAsoftware (Yang et al.2011). ThefinalGRM
for both BB and TC breeds was created by merging both
the autosome GRM and the X-chromosome nPAR region
GRM. The merged GRM was imported into GIBBS2F90 for
further analyses.

Statistical analyses
Within sex, heritability estimates were computed using single-
and multi-trait models, while genomic correlations were
estimated using bivariate and multi-trait models. Bivariate
models were employed to estimate the genomic correlations
between male and female traits. All analyses were performed

using GIBBS2F90 (Misztal et al. 2002). The general mixed-
model equation was as follows:

within-sex: single- and multi-trait models

y ¼ Xbþ Zaþ e ð1Þ
where y is a vector of observations for the analysed traits
within sex for each breed, b is a vector of fixed effects, a is the
vector of random additive animal effects, e is the vector of
random residual effects, and X and Z are incidence matrices
relating records to their respective effects for every individual
in the GRM. The assumptions for this analysis were as follows:
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whereG is the additive genetic covariance matrix of order n · n,
where n is the number of traits analysed, K is the genomic
relationship matrix for all animals, R is the residual
covariance matrix of order n · n, I is an identity matrix, � is
the Kronecker product operator.
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All parameters in Eqn 4 have been described in Eqn 1.
Subscripts 1 and 2 here are parameters relative to Traits 1 and
2 within sex for each breed. The assumptions of the structure of
(co)variances for bivariate model were as follows:
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where G and R are the additive and residual covariance
matrices of order 2 · 2, s2

a1, s
2
a2 are the additive genetic

variances for Trait 1 and Trait 2, sa12 is the covariance for the
two traits, s2
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Across-sex bivariate model

yB
yC

� �
¼ XB ;

; XC

� �
bB

bC

� �
þ ZB ;

; ZC

� �
aB
aC

� �
þ eB

eC

� �
½6�

All parameters in Eqn 3 have been described in Eqn 1.
Subscripts B and C here are parameters relative to traits
measured either in bulls (B) or in cows (C) for each breed.
The assumptions of the structure of (co)variance for bivariate
model were as follows:
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where G and R are the additive and residual covariance matrix
of order 2 · 2 (bull and cow), s2

aB, and s2
aC are respectively,

the additive genetic variances for the bull and cow, saBC is the
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covariance between the two sexes, s2
eB and s2

eC are the residual
(co)variances for the bull and cow traits respectively. It is
assumed that there is no residual covariance between the two
sexes.

The fixed effects included in the model were specific for
each trait and were deemed significant for the phenotypic
variations observed (Table 2). The contemporary group
(CG) effect was relevant for most traits. The CG represents
cohort of animals born in the same year and raised together
under the same management conditions. Information about CG
has been described in detail by Barwick et al. (2009), Burns
et al. (2013) and Johnston et al. (2014b). In BB, there were
58 levels for males and 78 levels for females in terms of CG. In
TC, there were 46 levels for males and 74 levels for females in
terms of CG. The laboratory assay batch was an important
aspect of the enzyme-linked immunosorbent assay (ELISA;
Moore et al. 1995) used to measure IGF1 (in BB there were
51 batches; in TC, 38 batches). Age of dam and the age of the
animal at the time of trait recording were considered and
included in the model as linear covariates when significant.

Posterior means and standard deviations for (co)variance
components, heritabilities and genetic correlations were
obtained using the POSTGIBBSF90 (Misztal et al. 2002).

The analysis consisted of a single chain of 100 000 cycles
discarding the first 20 000 cycles, taking a sample at every
50 iterations to obtain the parameters. The standard error of
heritability estimates and genomic correlations were obtained
using the OPTION se_covar_function of the POSTGIBBSF90
program (Misztal et al. 2002).

Results

Heritability estimates

The estimates of heritability and their corresponding standard
errors for both single- and multi-trait models are presented in
Table 3. The estimates for BB cows ranged from low to
moderate for both models. Days to calving at the first
calving opportunity (DC1) had the lowest heritability for
both single-trait (0.07 � 0.04) and multi-trait (0.17 � 0.05)
models, while AGECL had the highest estimates for both
models (single-trait: 0.56 � 0.08; multi-trait: 0.57 � 0.08).
For TC cows, the estimates of heritability ranged from low to
moderate for single-trait models and from low to high for
multi-trait models. DC1 had the lowest heritability for both
single-trait (0.04 � 0.03) and multi-trait (0.12 � 0.03) models,
while AGECL had a moderate estimate for the single-trait
(0.46 � 0.08) and a high estimate for the multi-trait (0.69 �
0.02) model. For BB and TC bulls, the heritability estimates in
most cases followed a similar pattern, with the estimates
ranging from low to high in both populations. For the
single-trait models, sperm motility (MOT) had the lowest
heritability estimate in BB (0.09 � 0.05) and TC (0.09 �
0.05), while SC24 had the highest estimates in both breeds
(0.62 � 0.07 in BB and 0.62 � 0.08 in TC). For multi-trait
analysis, again SC24 had the highest estimates of heritability
in both breeds (0.64 � 0.06 in BB and 0.69 � 0.07 in TC),
while MOT had the lowest estimate in BB (0.09 � 0.02) and
sperm mass activity (MAS) had the lowest estimate in TC

Table 2. Fixed effects included in the models for the analyses
CG; contemporary group; Batch, the batch of the IGF1 assay; AOD, age of
dam; Age, age of the animal when measured; PC1, principal component 1;
PC2, principal component 2 (PC1 and 2 are based on overall genotypes

subject to a principal-component analyses)

Trait Fixed effects
CG Batch AOD Age PC1 PC2

Brahman
AGECL X
PPAI X
IGF1c X X
DC1 X
DC5 X
AFC X
IGF1b X X
MAS X X
MOT X X
PNS X X
SC12 X X
SC18 X
SC24 X X

Tropical Composites
AGECL X X X
PPAI X X X
IGF1c X X X X
DC1 X X X
DC5 X X X
AFC X X X
IGF1b X X X X
MAS X X X X
MOT X X X X
PNS X X X X
SC12 X X X X
SC18 X X X
SC24 X X X X

Table 3. Heritability estimates and standard error for cow and bull
fertility traits in Brahman and Tropical Composite

BB, Brahman; TC, Tropical Composite; h2, heritability estimate

Trait BB TC
Single-trait

model
Multi-trait
model

Single-trait
model

Multi-trait
model

h2 s.e. h2 s.e. h2 s.e. h2 s.e.

Female traits
IGF1c 0.46 0.08 0.44 0.08 0.42 0.09 0.57 0.05
AGECL 0.56 0.08 0.57 0.08 0.46 0.08 0.69 0.02
PPAI 0.42 0.10 0.43 0.09 0.27 0.09 0.63 0.03
AFC 0.15 0.06 0.21 0.06 0.06 0.05 0.14 0.04
DC1 0.07 0.04 0.17 0.05 0.04 0.03 0.12 0.03
DC5 0.31 0.09 0.35 0.08 0.07 0.05 0.31 0.04

Male traits
IGF1b 0.43 0.07 0.51 0.08 0.48 0.07 0.53 0.01
MAS 0.15 0.06 0.14 0.04 0.06 0.04 0.18 0.06
MOT 0.09 0.05 0.09 0.02 0.09 0.05 0.22 0.06
PNS 0.35 0.07 0.40 0.07 0.31 0.08 0.34 0.07
SC12 0.60 0.07 0.62 0.07 0.59 0.08 0.61 0.07
SC18 0.61 0.06 0.63 0.06 0.62 0.07 0.64 0.07
SC24 0.62 0.07 0.64 0.06 0.62 0.08 0.69 0.07
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(0.18 � 0.06). Generally, heritability estimates from the multi-
trait analysis were higher than the estimates from a single-trait
models and were usually accompanied by lower standard
errors.

Genomic correlations: cow-fertility traits

Genetic correlation (bivariate and multivariate) among cow-
fertility phenotypes for both BB and TC are presented in
Table 4. In general, a range of strong positive and negative
genetic correlations was recorded between the studied traits for
both breeds. Given the low heritabilities of age at first calving
(AFC) and DC1 in both breeds, all genetic correlation estimates
with these traits had large standard errors. The magnitude of the
errors was reduced in the multi-trait model.

For BB cows, the strongest genetic correlation was
observed between AGECL and DC1 for both bivariate (BB:
0.76 � 0.20) and multivariate (BB: 0.59 � 0.17) model.
However, for TC cow, the strongest correlation was
observed between PPAI and DC5 (TC: 0.89 � 0.14) for
bivariate and AGECL and PPAI (TC: 0.87 � 0.05) for
multi-trait model.

Genomic correlation: bull fertility

Genetic correlation (bivariate and multivariate) among bull
fertility phenotypes for both BB and TC breeds are presented
in Table 5. Generally, the estimates of genetic correlation were
all positive in both genotypes for both models, indicating a
lack of genetic antagonism among the studied traits. A notable

Table 4. Genetic correlations across cow fertility traits for the bivariate models (below diagonal) and the multi-trait
models (above diagonal) in Brahman and Tropical Composites

Standard error (s.e.) in parentheses. BB, Brahman; TC, Tropical Composites; bold indicates an estimate with a s.e. less than
1/2 the size of the correlation

Trait IGF1c AGECL PPAI AFC DC1 DC5

BB cow
IGF1c –0.55 (0.11) –0.30 (0.16) –0.51(0.18) 0.03 (0.19) –0.36 (0.17)
AGECL –0.53 (0.12) 0.19 (0.16) 0.12 (0.18) 0.59 (0.17) 0.45 (0.15)
PPAI –0.22 (0.17) 0.20 (0.16) 0.11 (0.21) 0.27 (0.20) 0.55 (0.19)
AFC –0.60 (0.12) 0.17 (0.23) 0.23 (0.26) 0.11 (0.22) –0.10 (0.20)
DC1 –0.26 (0.40) 0.76 (0.20) 0.37 (0.38) 0.25 (0.49) 0.54 (0.16)
DC5 –0.27 (0.19) 0.41 (0.17) 0.65 (0.25) –0.30 (0.36) 0.78 (0.31)

TC cow
IGF1c –0.68 (0.06) –0.54 (0.08) –0.66 (0.18) –0.63 (0.13) –0.53 (0.10)
AGECL –0.43 (0.15) 0.87 (0.05) 0.53 (0.14) 0.50 (0.13) 0.55 (0.10)
PPAI –0.24 (0.23) 0.74 (0.13) 0.53 (0.10) 0.69 (0.08) 0.76 (0.08)
AFC –0.42 (0.38) 0.57 (0.21) 0.53 (0.38) 0.41 (0.21) 0.24 (0.19)
DC1 –0.60 (0.33) 0.47 (0.26) 0.82 (0.20) 0.54 (0.38) 0.60 (0.12)
DC5 –0.55 (0.24) 0.30 (0.28) 0.89 (0.14) –0.52 (0.45) 0.29 (0.49)

Table 5. Genetic correlations across bull fertility traits for the bivariate models (below diagonal) and the multi-trait
models (above diagonal) in Brahman and Tropical Composites

Standard error (s.e.) in parentheses. BB, Brahman; TC, Tropical Composites; bold indicates an estimate with a s.e. less than
1/2 the size of the correlation

Trait IGF1b MAS MOT PNS SC12 SC18 SC24

BB bull
IGF1b 0.26 (0.17) 0.51 (0.11) 0.27 (0.14) 0.55 (0.09) 0.38 (0.10) 0.22 (0.11)
MAS 0.14 (0.26) 0.70 (0.12) 0.67 (0.13) 0.27 (0.14) 0.57 (0.11) 0.54 (0.12)
MOT 0.33 (0.27) 0.77 (0.20) 0.79 (0.07) 0.10 (0.13) 0.24 (0.12) 0.27 (0.11)
PNS 0.25 (0.17) 0.81 (0.18) 0.79 (0.19) 0.12 (0.13) 0.21 (0.11) 0.13 (0.12)
SC12 0.54 (0.10) 0.35 (0.23) 0.15 (0.27) 0.02 (0.15) 0.86 (0.03) 0.75 (0.05)
SC18 0.37 (0.11) 0.55 (0.16) 0.28 (0.25) 0.20 (0.13) 0.89 (0.05) 0.93 (0.02)
SC24 0.23 (0.12) 0.59 (0.17) 0.31 (0.26) 0.12 (0.14) 0.83 (0.06) 0.97 (0.02)

TC bull
IGF1b 0.69 (0.03) 0.88 (0.04) 0.57 (0.14) 0.38 (0.15) 0.26 (0.16) 0.14 (0.16)
MAS 0.51 (0.31) 0.92 (0.04) 0.59 (0.16) 0.34 (0.17) 0.33 (0.17) 0.25 (0.16)
MOT 0.13 (0.28) 0.91 (0.22) 0.57 (0.15) 0.11 (0.17) 0.17 (0.17) 0.17 (0.17)
PNS 0.20 (0.17) 0.82 (0.20) 0.71 (0.24) 0.25 (0.15) 0.22 (0.14) 0.19 (0.14)
SC12 0.11 (0.13) 0.73 (0.26) 0.47 (0.36) 0.33 (0.15) 0.87 (0.03) 0.75 (0.05)
SC18 0.04 (0.12) 0.58 (0.32) 0.40 (0.31) 0.31 (0.16) 0.89 (0.04) 0.95 (0.01)
SC24 –0.03(0.13) 0.51 (0.34) 0.45 (0.28) 0.25 (0.15) 0.77 (0.06) 0.97 (0.01)
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exception was the correlation between IGF1b and SC24 (–0.03
� 0.33) for the bivariate model. However, these estimates were
positive for all traitswhen analysed using amulti-traitmodel. The
strongest genetic correlation was observed between SC18 and
SC24 for both bivariate (BB: 0.97� 0.02; TC: 0.97� 0.01) and
multivariate (BB: 0.93 � 0.02; TC: 0.95 � 0.01) models.

Across-sex genomic correlations

Estimated genetic correlations (bivariate) between cow and
bull traits for BB and TC are presented in Table 6. Some
standard errors for these correlations are larger than the
genomic correlation itself, implying that the correlations are
not significant.

For BB, IGF1b was favourably correlated with all the
female fertility phenotypes, with the strongest negative
correlation recorded between IGF1b and AGECL (–0.65 �
0.13) and the lowest observed between IGF1b and DC5 (–0.02
� 0.20). Semen-quality traits (MAS, MOT and percentage
normal sperm (PNS)) had a negative correlation with PPAI,
with estimates of –0.81� 0.30, –0.75� 0.39 and –0.50� 0.19
respectively. SC12, SC18 and SC12 had a moderate negative
genetic correlation with AGECL (–0.32 � 0.15) and (–0.36 �
0.12), (–0.25 � 0.12) respectively. Moderate negative
correlations were also observed between SC12 and DC1
(–0.32 � 0.30) as well as SC12 and DC1 (–0.21 � 0.31)
respectively.

Similar to the result observed for IGF1b in BB, this trait
was also favourably correlated with AGECL (–0.55 � 0.14)
and PPAI (–0.17 � 0.22) in TC, with the strongest estimate
being recorded for DC5 (–0.94 � 0.13). PNS had a strong
negative correlation with DC1 (–0.60 � 0.28) and a moderate
negative correlation with AFC (–0.24 � 0.28). A moderate
genetic correlation was also recorded between SC12 and
AGECL (–0.26 � 0.13). SC12 had a negative correlation
with DC1 (–0.06 � 0.58).

Discussion

The objective of most cattle breeding programs is to maximise
genetic gain for traits that are of economic relevance to beef

production. In part, the success of these breeding programs
depends on the accuracies with which the genetic parameters
are estimated (Wellmann and Bennewitz 2019). Nowadays,
many traits are important to cattle breeders. Producers are
often interested in a combined selection objective that uses
information from many traits to form a total merit index (Cole
and VanRaden 2018). Genetic parameters estimated from a
multi-trait model are regarded as more accurate because their
estimates utilise additional genomic information and use the
complex covariance structure among traits (Analla et al. 1995;
Zhang et al. 2018). Moreover, these multi-trait models are
expected to produce higher estimates of heritability than
single-trait models, due to the additional information. For
most traits, we observed higher heritabilities in the multi-
trait model. This difference between single- and multi-trait
analyses was more evident in TC than in BB. Perhaps, this
could be partly explained by the higher genetic variation that
composite breeds exhibit than their founders (Rasali et al.
2006). The increase in the proportion of segregating alleles in
composite breeds could be advantageous and this information
could have been captured in the multi-trait model. In either
case, the use of multi-trait models is likely to be advantageous.

Heritability estimates for all phenotypes reported herein, in
both BB and TC breeds, are in line with previous estimates for
similar traits from single-trait models with either pedigree
(Corbet et al. 2009; Corbet et al. 2013; Johnston et al. 2014b;
Johnston and Moore 2019) or genomic information (Raidan
et al. 2019; Fortes et al. 2020). Estimated heritabilities imply
that genetic improvement can be made through selection for
these fertility traits. However, some of the studied traits will
respond to selection faster than others. The lower heritability
estimates for calving traits, such as AFC or DC1, or semen-
quality traits, such as MAS and MOT, imply that these traits
are not going to respond as fast as AGECL or IGF1 in selective
breeding. Probably, the environmental effects are higher for
these traits with lower heritabilities and it may be efficient to
explore the correlated response via other fertility traits to
achieve faster genetic progress (Raidan et al. 2019). Most
importantly, MAS and MOT were measured here as visual
scores and there is a degree of subjectiveness to these traits.

Table 6. Genomic correlations estimated between cow and bull fertility traits in Brahman and Tropical Composite cattle
Standard error (s.e. in parentheses). BB, Brahman; TC, Tropical Composite; bold indicates an estimate with a s.e. less than 1/2 the size of the correlation

Trait IGF1b MAS MOT PNS SC12 SC18 SC24

BB
IGF1c 0.86 (0.11) 0.26 (0.27) –0.41 (0.44) 0.10 (0.17) 0.39 (0.13) 0.46 (0.13) 0.32 (0.13)
AGECL –0.65 (0.13) –0.20 (0.27) –0.37 (0.41) 0.00 (0.17) –0.32 (0.15) –0.36 (0.12) –0.24 (0.12)
PPAI –0.34 (0.18) –0.81 (0.30) –0.75 (0.39) –0.50 (0.19) –0.12 (0.15) –0.12 (0.15) –0.07 (0.15)
AFC –0.22 (0.29) 0.65 (0.49) 0.66 (0.84) 0.07 (0.29) 0.20 (0.21) 0.14 (0.21) 0.15 (0.21)
DC1 –0.30 (0.21) 0.56 (0.44) –0.31 (0.55) –0.01 (0.56) –0.32 (0.30) –0.21 (0.31) –0.04 (0.30)
DC5 –0.02 (0.20) –0.23 (0.33) 0.01 (0.51) –0.02 (0.22) 0.20 (0.16) 0.21 (0.15) 0.24 (0.16)

TC
IGF1c 0.93 (0.11) 0.14 (0.63) 0.20 (0.43) –0.04 (0.22) 0.17 (0.14) –0.01 (0.14) –0.08 (0.13)
AGECL –0.55 (0.14) 0.44 (0.66) 0.43 (0.44) 0.04 (0.21) –0.26 (0.12) –0.10 (0.13) –0.01 (0.12)
PPAI –0.17 (0.22) 0.13 (0.82) 0.74 (0.59) 0.20 (0.28) 0.10 (0.20) 0.26 (0.19) 0.29 (0.17)
AFC 0.44 (0.33) –0.14 (0.60) 0.28 (0.56) –0.24 (0.28) –0.43 (0.35) 0.13 (0.46) 0.32 (0.30)
DC1 0.10 (0.50) –0.31 (0.69) –0.20 (0.72) –0.60 (0.28) –0.06 (0.58) 0.20 (0.50) 0.45 (0.37)
DC5 –0.94 (0.13) 0.11 (0.53) –0.25 (0.46) –0.46 (0.43) –0.21 (0.48) 0.19 (0.36) 0.58 (0.30)
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Assessment of semen motility by using computer-assisted
semen analysis could remove some of the human error and
perhaps provide a more heritable trait for selection.

Several studies have suggested measuring the concentration
of IGF1 as an indicator for cow reproductive potential (Taylor
et al. 2004; Velazquez et al. 2008). From our results, IGF1c is
favourably correlated with most of the female fertility traits
studied in both breeds, indicating its multiple roles in
reproduction. Therefore, the increased level of IGF1
concentration in the blood could be an indication for cows
with the potential to reach puberty early, conceive, calve, and
also re-breed early for the next calving season. These
favourable correlations between IGF1 and several other
fertility traits such as age at first ovulation, conception rate
to first service, age at first calving, calving rate, and postpartum
anoestrus interval have been reported in several studies
(Yilmaz et al. 2004, 2006; Falkenberg et al. 2008;
Velazquez et al. 2008). Late onset of puberty is an
important component of the reduced lifetime productivity
observed in tropically adapted beef (Lesmeister et al. 1973;
Johnston et al. 2014a). This explains the estimated positive
genetic correlation between AGECL and other female fertility
traits in the two breeds. Therefore, genetic selection for
increased concentration of IGF1 measured in heifers at
~18 months of age might contribute to early puberty and
improve lifetime reproductive rates in Brahman cattle. IGF1
is highly influenced by nutritional status, and so proper
nutritional programming will be required to accelerate
puberty in heifers (Zulu et al. 2002; Alves et al. 2017).

Similar to our study, Corbet et al. (2013) found no genetic
antagonism between bull fertility phenotypes. Regardless, it
might be difficult to recommend a single phenotype as a
reliable indicator of bull fertility. For instance, if we select
bulls on the basis of sperm morphology and other assessments
are neglected (i.e. assessment such as physical health that is
required for mating in extensive beef farms), then the required
genetic progress might not be achieved. Thus, various
measurements of bull fertility as obtainable using the bull
breeding soundness evaluation (BBSE) are important for
sensible breeding decisions (Fordyce et al. 2006). Selecting
bulls by using multiple indicator traits provides a better chance
of improving the overall fertility of the herd.

Genetic improvement programs for female fertility in beef
cattle has been hindered by the difficulty of collecting accurate
fertility-related phenotypes needed to improve the predictive
ability of genomic selection models (Tiezzi and Maltecca
2011). Some nucleus herds (or research stations) are
capable of collecting very detailed, accurate and sometimes
expensive fertility phenotypes (Schatz et al. 2010). However,
the size from these nucleus herds tends to be relatively small
and sample size affects the predictive power of genomic
selection. In contrast, commercial herds might be a source
of large datasets, with the disadvantage that phenotypes may
be less precise (Hayes et al. 2019a). Traits that are directly
related to female fertility are not feasible to measure on a large
number of cattle in extensively managed herds, which
characterise the typical production system of tropically
adapted beef cattle in Australia and other countries (Hayes
et al. 2019b). This challenge, as well as the complexity of the

production systems faced by animal breeders, point to a
potential solution, namely, focussing on favourably
correlated traits (i.e. traits that are easy to measure early in
life) that together act as a fertility index (Brito Lopes et al.
2016). Since bull fertility phenotypes are heritable and less
expensive to measure than lifetime female fertility data,
identification of traits in male that have a high genetic
correlation with female fertility could significantly aid the
improvement of reproductive performance of tropically
adapted cows (Jeyaruban and Johnston 2017). Moreover,
high selection intensity is achievable in males, allowing few
genetically superior bulls to contribute to a large percentage
of the genetic make-up of the next generation (Martinez-
Velazquez et al. 2003; Weigel 2017). From the present
study, IGF1 measured in bull favourably correlated with
early fertility phenotypes in the BB breed. These favourable
across-sex correlations have been reported in previous studies
investigating the correlation between male and female
reproductive traits such as age at puberty, pregnancy rate,
age at first calving, days to calving and calving rate (Yilmaz
et al. 2006; Johnston et al. 2014b). This implies that selection
for concentration of IGFI as early as at 6 months in bulls
might improve reproductive performance in BB cattle.
Notwithstanding, it will be important to investigate the cost
of measuring IGF1 in bulls on herd profitability before
recommending this practice. Even if selection decision is
made at this early age, assessment of bulls through BBSE
will still be required to ensure that the selected bulls are indeed
capable of breeding, because (a) the correlation between IGF1
and BBSE success is far from perfect, and (b) several
circumstances and environmental factors, including disease,
might affect bull fertility in the timespan between 6 and
24 months of age (i.e. between IGF1 measurement and the
first mating season of a bull).

However, in TC breed, IGF1b was favourably correlated
only with AGECL, PPAI and DC5, but not with AFC and DC1.
These traits (AFC and DC1) were correlated only with PNS in
this breed. Nevertheless, the estimates are in tandem with the
findings of Johnston et al. (2014b), who reported a favourable
correlation between IGF1b and AGECL in TC breed. The
authors also found PNS to be genetically correlated with most
early female fertility phenotypes. Therefore, IGF1b and PNS
could be useful as indirect selection criteria for improving
female reproduction in TC breed.

Of note from our study is the difference in the period of
measurement of IGF1 across the sexes. In cow, IGF1 was
measured at 18 months, whereas the measurement was
observed in bull as early as at 6 months of age. There is
considerable evidence that IGF1 concentration varies with age
(Abribat et al. 1990; Larnkjær et al. 2012; Michaelsen 2013).
As we are not certain on the implication of measuring IGF1
early on female fertility, further research is required to firmly
establish this trait as a biomarker for pubertal development that
might be useful for a selection decision for cattle breeding. The
big gain from genomic selection is the ability to estimate
genomic breeding values at birth or even at embryo for both
male and female calves quite accurately without the need for
the animal’s own performance record, as long as there is a
sizable and relevant reference population (Hayes and Goddard
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2010; Taylor 2014; Hayes et al. 2019b). These genomic
estimated breeding values may allow breeders to make an
accurate selection decision before the breeding season and
assist with stoking decisions.

Findings from Johnston et al. (2014b) have shown that SC
is a modest predictor of age at puberty in tropically adapted
beef cattle. In the present study, SC18 better reflected puberty
in BB, while the estimate could be as short as 12 months in
TC. This is not surprising as Brahman are typically late
pubertal when compared with Bos taurus breeds (Lunstra
and Cundiff 2003; Lopez et al. 2006). Furthermore, SC
measured at 12 and 18 months in Brahman was also found
to be a moderate predictor for DC1. However, in TC, the
estimate of genetic correlation between SC12 and DC1 was
negative, although not very large, indicating that selection for
SC12 had a favourable influence on DC1. The estimate
becomes positive at 18 and 24 months, albeit with a large
standard error. These results correspond with the findings of
Jeyaruban and Johnston (2017), where moderate genetic
correlations were observed between SC measured between
300 and 700 days of age and DC1 for BB breed. The authors
also reported a negative estimate for Santa Gertrudis cattle, a
stabilised composite with 50% to 30% Bos indicus content
(Hayes et al. 2019b). This estimate is consistent with what we
observed for TC. Differences in results for SC12, SC18 and
SC24 are expected, especially when we consider the breed
differences in pubertal development between BB and TC. BB
cattle are late pubertal and so it is expected that we observe a
lot of variation in SC in the early measurements (Lunstra et al.
1978; Lunstra and Cundiff 2003). As we progress to 24 months
of age, most bulls have already passed puberty, which means
there is less variation in the trait and SC24 might not be a good
indicator of female fertility traits anymore. In TC, at
12 months, many bulls have reached pubertal and are also
producing sperm, which is different from the BB (Corbet et al.
2013). Therefore, depending on breed, different ages for SC
measurement are required to better capture these favourable
correlations with female fertility traits.

Conclusions

The heritability estimates and genomic correlations from the
present study generally support and confirmed the earlier
estimates from pedigree analyses. Within sex, IGF1c might
be used as a predictor of female fertility and BBSE traits might
be combined to accurately predict bull fertility. Across sex,
IGF1b might be a useful indicator for early-in-life female
fertility traits in Brahmans, while both IGF1b and PNS could
be indicator traits for female fertility in TC. The findings from
this study suggest that selection for fertility traits will have a
favourable correlated response to selection within and across
sex.
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