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Abstract
Context. Immune competence is a proxy trait for general disease resistance and is based on combined measures of an

animal’s ability to mount both a cell-mediated immune response (Cell-IR) and an antibody-mediated immune response
(Ab-IR). On the basis of previously described arithmetic, we combined these measures into a single proxy trait for
immune competence, named ImmuneDEX (IDEX).

Aims. Using a population of 3715 Australian Angus steers (n = 2395) and heifers (n = 1320) with genotypes for
45 364 single-nucleotide polymorphisms, we provide the latest genomic estimates of heritability and genetic
correlations for IDEX and the components Cell-IR and Ab-IR immune competence phenotypes. Accuracy and bias
of genomic predictions of breeding values are also presented and discussed.

Methods.Measures of Cell-IR, Ab-IR and IDEX were analysed jointly in a tri-variate genomic restricted maximum-
likelihood model that contained the fixed effects of contemporary group with 80 levels, the linear covariates of age at
measurement and change in skin thickness at control site, and the random polygenic (genomic estimated breeding value,
GEBV) and residual effects. Following Method LR procedures, we estimate accuracy, bias and dispersion of genomic
predictions using a cross-validation scheme based on five year-of-birth cohorts.

Key results.We report genomic restricted maximum-likelihood model estimates of heritability of 0.247 � 0.040 for
Cell-IR, 0.326 � 0.059 for Ab-IR, 0.275 � 0.046 for IDEX. While a small positive genetic correlation (rg) was
estimated between Cell-IR and Ab-IR (rg = 0.138 � 0.095), strongly positive estimates were obtained between IDEX
and Cell-IR (rg = 0.740 � 0.044) and between IDEX and Ab-IR (rg = 0.741 � 0.036). Averaged across the five
validation sets, the accuracy of GEBV for Cell-IR, Ab-IR and IDEX was 0.405, 0.443 and 0.411 respectively. Also,
some significant bias or dispersion can be expected depending on the cohort used as the validation population.

Conclusions. Consistent with previous findings, immune competence phenotypes are moderately heritable and
accurate GEBV can be generated to allow the selection of cattle with an improved ability to mount a general immune
response.

Implications. Our analyses suggest that ImmuneDEX will provide a tool to underpin long-term genetic strategies
aimed at improving the immune competence of Australian Angus cattle in production systems, which, in turn, is
expected to reduce the incidence of disease and our reliance on antibiotics to treat disease.
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Introduction

The ability to simultaneously select for improved productivity
and animal welfare outcomes is key to maintain sustainable
livestock production. One way to achieve this goal is to breed
animals with enhanced immune competence, described as an
animal’s ability to mount an immune response, which is

expected to be an indirect indicator of an animal’s ability to
resist disease challenges faced in their production environment
(Wilkie and Mallard 1999).

Using a population of 1149 Australian Angus cattle, Hine
et al. (2019) developed a method for on-farm assessment of
immune competence in beef cattle, which combines measures
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of an animal’s ability to mount both a cell-mediated
immune response (Cell-IR) and an antibody-mediated immune
response (Ab-IR).Using the sameanimal resource,Dominiket al.
(2019) applied a weighted average to combine both immune
response metrics into a single immune competence phenotype.
Their results suggested that a stronger emphasis onCell-IRwould
minimise negative impacts on the production trait, feedlot exit
weight; however, the importance of a balanced ability to mount
both Cell-IR and Ab-IR for general disease resistance was
acknowledged.

More recently, Reverter et al. (2021) expanded that earlier
work by using a population of 2853 Australian Angus steers
and heifers to estimate pedigree-based genetic parameters for
immune response metrics. The authors also introduced
ImmuneDEX (IDEX) as a single phenotype that describes
immune competence by combining Cell-IR and Ab-IR into a
single measure and reported its relationship with commonly
measured traits related to growth, feedlot performance and
carcass characteristics. Key findings for that earlier work
indicated that ImmuneDEX will provide a basis to breed
animals that are both highly productive and with an
enhanced ability to resist disease.

The objective of the present study was to further expand on
that work using a population of 3715 Australian Angus steers
and heifers with genotypes for 45 364 autosomal single-
nucleotide polymorphisms (SNPs), and to provide the latest
multivariate genomic estimates of heritability and genetic
correlations for IDEX and the associated Cell-IR and Ab-IR
immune competence phenotypes. In addition, accuracy, bias
and dispersion of genomic predictions of breeding values
(GEBV) for Cell-IR, Ab-IR and IDEX are presented and
discussed.

Materials and methods

Animals and cohorts
In total, 2395 Angus steers and 1320 Angus heifers that were
progeny from the Angus Sire Benchmarking Program (ASBP)
were included in this study. Animals were from five year-of-
birth (YOB) cohorts: 2012 (n = 497 animals from 48 sires),
2013 (n = 418 animals from 43 sires), 2016 (n = 1220 animals
from 64 sires), 2017 (n = 925 animals from 56 sires) and 2018
(n = 655 animals from 43 sires), representing 12 herds and
232 sires from the ASBP. The ASBP is a major initiative of
Angus Australia to generate progeny test data on modern
Angus bulls, particularly for hard-to-measure traits such as
feed efficiency, abattoir carcass measurements, meat-quality
attributes, and female reproduction (https://www.angusaustralia.
com.au/sire-benchmarking/about/general-information/).

By its own design, there exist minimal sire linkages across
YOB cohorts in the ASBP. In our current dataset, there were
three link sires between YOB cohorts 2012 and 2013, 14 link
sires between YOB cohorts 2016 and 2017, two link
sires between YOB cohorts 2016 and 2018, and five
link sires between YOB cohorts 2017 and 2018.

Phenotypes and genotypes
On the basis of previously described protocols (Hine et al.
2019), the immune competence phenotype of animals was

assessed using measures of both Cell-IR and Ab-IR. In brief,
calves were vaccinated with Ultravac 7in1 clostridial and
leptospira vaccine (Zoetis) on the day they were weaned.
Calves were then given time to respond to the vaccination
and Cell-IR was assessed by measuring the magnitude
of delayed-type hypersensitivity reactions induced by
intradermal injection of the clostridial and leptospira
vaccine in the caudal fold of the tail. The Cell-IR trait is
expressed for each animal as the increase in skin-fold thickness
at the test site receiving the vaccine relative to the increase in
skin-fold thickness observed at the control site receiving
saline. To assess Ab-IR, the production of tetanus toxoid-
specific IgG1 serum antibody was measured between Day 8
and Day 21 post-vaccination (depending on prior vaccination
history), by using an enzyme-linked immunosorbent assay and
results are reported in optical-density units. All animals within
a herd-testing cohort had an identical vaccination history
and were assessed for immune competence on the same day
post-vaccination. To approximate normality, the immune
competence phenotypes of Cell-IR and Ab-IR were log- and
square root-transformed respectively. Finally, values were
multiplied by 100 for numerical convenience.

Following Reverter et al. (2021), Cell-IR and Ab-IR were
combined to generate IDEX as follows:

IDEX ¼ ZCELL þ 1� rj jð ÞZAB½ � 1� dRankj j
n� 1

� �
:

where ZCELL and ZAB are the Z-score standardisation of Cell-IR
and Ab-IR respectively; r is the Pearson correlation coefficient
between Cell-IR and Ab-IR; and dRank is the difference in
ranking of individuals for each metric.

In addition, genotypes for 45 364 autosomal SNPs were
available for the 3715 animals included in the study, and were
used to compute the genomic relationship matrix (G) following
Method 1 of VanRaden (2008) with the modification of Karoui
et al. (2012) to make it invertible, as follows:

G ¼ 0:95 � SST

2
P

pi 1� pið Þ þ 0:05 � I;

where S is the centred matrix relating SNP genotypes (recoded
as 0, 1 or 2) in columns with animals in rows, and pi is the
frequency of the second allele of the ith SNP, and I is an
identity matrix included to make Genomic Relationship Matrix
invertible by enlarging the diagonal elements.

Genomic predictions and cross-validation models
Variance components, heritability (h2), genetic (rg) and
residual (re) correlations were estimated on the basis of
GBLUP methodology, by using the Qxpak5 software
(Pérez-Enciso and Misztal 2011). For the genomic
prediction models, we performed GBLUP analyses using a
tri-variate (Cell-IR, Ab-IR and IDEX) mixed-effect model that
contained the fixed effects of contemporary group (CG), and
the linear covariates of age at measurement in days and the
logarithm of the fold change in skin thickness at the control
site. For each phenotype, CG contained animals of the same
sex, YOB cohort, month of birth, property of origin, and date
of measurement.
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Additionally, the random additive polygenic and residual
effects were fitted with assumed distributions N(0, G�V) and
N(0, I�R) respectively, where G represents the genomic
relationship matrix described earlier, V is the 3 · 3 genetic
co-variance matrix, I is an identity matrix, R is the residual
variance–covariance matrix and � represents the Kronecker
product.

The tri-variate analysis was initially performed with the
whole dataset of 3715 records. Then, for the cross-validation,
the analysis was repeated five times, each after setting as
missing values the records from animals of a given YOB
cohort. The resulting GEBV from the analysis using the entire
dataset are termed ûw to indicate that they are based on the
whole dataset and will be used as the calibration. Similarly,
the GEBV from the analyses that treated as missing values
records from a given YOB cohort are termed ûp to indicate that
they are based on partial data and will be used as the
validation.

Traditional (Bolormaa et al. 2013) and Method LR (Legarra
and Reverter 2018) approaches were used to estimate
accuracy, bias and dispersion of GEBV. The following four
metrics were employed:

(1) Traditional accuracy (ACCT): in the context of cross-
validation, the accuracy of a GEBV is traditionally
computed from the Pearson correlation between a GEBV
and the adjusted phenotype (y*; phenotype y adjusted for
fixed effects) for individuals in the validation population,
and divided by the square root of heritability:

ACCT ¼ r ûp; y�
� �

ffiffiffiffiffi
h2

p

(2) Method LR Accuracy (ACCLR): for individuals in the
validation population, Method LR accuracy was
computed as follows:

ACCLR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov ûw; ûp
� �

1þ �F � 2�f
� �

s2
g;¥

s

where �F is the average inbreeding coefficient, 2�f is the average
relationship between individuals, and s2

g;¥ is the genetic
variance at equilibrium in a population under selection.
Assuming the individuals in the validation population are not
under selection, s2

g;¥ can be approximated by the additive
genetic variance estimated from the partial dataset.

(3) Method LR Bias (BiasLR): difference between the average
GEBV of individuals in the validation population using
the partial data minus that using the whole data:

BiasLR ¼ ûp � ûw

In the absence of bias, the expected value of BiasLR is zero,
whereas positive and negative values indicate respectively
overestimation and underestimation of GEBV for validation
animals when their own observation was not included.

(4) Method LR Dispersion (DispLR): for individuals in the
validation population, dispersion was measured from the
slope of the regression of ûw on ûp:

DispLR ¼ 1� cov ûw; ûp
� �
var ûp

� �
In the absence of bias, the expected value of DispLR is 0.

Values less than 0 indicate under-dispersion (or deflation) of
ûp into ûw as phenotypes become available. Values >1 indicate
over-dispersion (or inflation) of ûp into ûw.

Results and discussion

Phenotypes, genomic relationships and genetic
parameters

Table 1 provides summary statistics for all phenotypes and
covariates used in analyses. To approximate normality, the
immune competence phenotypes for Cell-IR and Ab-IR were
log- and square root-transformed respectively, and were
consistent with the values reported by Reverter et al.
(2021), using a subset of 2853 animals. Across all 3715
animals from the current study, and using raw unadjusted
measurements, the correlation between Cell-IR and Ab-IR was
moderately positive at 0.195 � 0.016 and slightly higher for
steers (0.206 � 0.020) than for heifers (0.138 � 0.027).

In agreement with theoretical expectations, the 3715
diagonal elements of the genomic relationship matrix G
averaged 0.997, with a standard deviation (s.d.) of 0.028,
and ranged from 0.912 to 1.131. Meanwhile, the 6 898 755
off-diagonal elements of G averaged –0.000, with a s.d. of
0.030 and ranged from –0.105 to 0.648. The similarity in the
variance of diagonal and off-diagonal elements indicates both
that a sufficiently large number of SNP was used to estimate
relationships and the presence of a single-breed population
(Simeone et al. 2011).

Genomic estimates of genetic variance (�standard error,
s.e.) for Cell-IR, Ab-IR and IDEX were 17.093 (�2.852),
153.646 (�31.236) and 0.260 (�0.047) respectively.

Table 1. Summary statistics includingmean, standard deviation (s.d.),
minimum and maximum for the immune competence traits and

covariates for the 3715 animals included in the study
Cell-IR, cell-mediated immune response (log-transformed); Ab-IR,
antibody-mediated immune response (square-root transformed; OD,
optical density); IDEX, ImmuneDEX; AGE, age at time of immune
competence testing; CST, change in skin thickness at control site when

assessing Cell-IR

Category/variable Mean s.d. Min. Max.

Immune competence trait
Cell-IR (100 · log(mm)) 26.939 9.497 –7.073 177.815
Ab-IR (100 · OD units) 86.535 24.817 14.021 145.954
IDEX 0.005 1.137 –4.457 9.127

Linear covariates
AGE (days) 197.136 39.805 88.000 310.000
CST (log(mm)) –0.007 0.042 –0.194 0.252
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Table 2 provide estimates of h2, genetic and residual
correlations across the three immune competence traits
using the whole dataset. The estimates of h2 for Cell-IR
and Ab-IR were 0.247 � 0.039 and 0.326 � 0.059
respectively. These values are comparatively lower than the
pedigree-based estimates recently reported by Reverter et al.
(2021) of 0.31 � 0.06 and 0.42 � 0.06 respectively, for the
same traits. The lower estimates can be attributed to several
factors, including the use of genomic data here, the larger
sample size and the analytical models (i.e. trivariate here vs the
average of bivariate in the earlier work).

The estimated rg between Cell-IR and Ab-IR was 0.138 �
0.095, closer to zero and more precisely estimated because of
the larger sample size than the 0.33 � 0.12 (Reverter et al.
2021), 0.48 � 0.19 (Hine et al. 2019) or the 0.40 � 0.22 from
Dominik et al. (2019) values reported previously. However,
strongly positive estimates of genetic correlation were
obtained between IDEX and Cell-IR (rg = 0.740 � 0.044)
and between IDEX and Ab-IR (rg = 0.741 � 0.036). These
high genetic correlation estimates between component traits
and the composite trait are comparatively less extreme, but
within two s.e., of the ones reported by Reverter et al. (2021)
of 0.80 � 0.05 (for IDEX and Cell-IR) and 0.85 � 0.04 (for
IDEX and Ab-IR). Taken together, these values anticipate the
suitability of IDEX as a single phenotype to aid in the genetic
improvement of immune competence and potentially general
disease resistance in the current population.

Further research is needed to (re)evaluate the relationship
between the immune competence phenotypes analysed here and
productivity-based phenotypes related to growth, feedlot

performance and carcass characteristics. In particular, it
would be of interest to recapitulate the negative genetic
correlation between the immune competence traits and the
growth traits, such as –0.38 � 0.14 between IDEX and the
weaning weight estimated by Reverter et al. (2021). Such
finding would agree with previous reports showing that
selection for productivity, with no emphasis on health and
fitness traits, has increased susceptibility to disease in many
species of food-producing animals (Rauw et al. 1998).

Accuracy, bias and dispersion of GEBV

Table 3 shows the ACCT and ACCLR of GEBVs for the three
immune competence traits when each consecutive YOB cohort
was used as the validation population. While there was a strong
correlation between ACCT and ACCLR across the 15 measures
(r = 0.831 � 0.154), on average, the ACCLR accuracies were
38% higher than the ACCT accuracies (0.420 vs 0.304).
Averaged across the five YOB cohorts, the highest accuracy
was observed for Ab-IR (ACCT=0.348, ACCLR = 0.443),
which could be attributed to its higher h2 estimate (0.326 �
0.059; Table 2). With a reference population of 4000 animals,

Table 2. Estimates (�s.e.) for heritability (bold, diagonal), genetic
(above diagonal) and residual (below diagonal) correlations for the
three immune competence traits: cell-mediated immune response
(Cell-IR, log-transformed), antibody-mediated immune response

(Ab-IR; square-root transformed) and ImmuneDEX (IDEX)

Trait Cell-IR Ab-IR IDEX

Cell-IR 0.247 ± 0.039 0.138 ± 0.095 0.740 ± 0.044
Ab-IR 0.115 ± 0.047 0.326 ± 0.059 0.741 ± 0.036
IDEX 0.755 ± 0.019 0.677 ± 0.032 0.275 ± 0.045

Table 3. Traditional (ACCT) and method LR (ACCLR) accuracies of
GEBVs for the three immune competence traits, namely, cell-mediated
immune response (Cell-IR, log-transformed), antibody-mediated
immune response (Ab-IR; square-root transformed) and
ImmuneDEX (IDEX), when each consecutive YOB cohort was

used as the validation population

Trait YOB cohort (number of animals) Mean
2012

(n = 497)
2013

(n = 418)
2016

(n = 1220)
2017

(n = 925)
2018

(n = 655)

ACCT

Cell-IR 0.310 0.263 0.255 0.361 0.249 0.288
Ab-IR 0.355 0.327 0.365 0.393 0.299 0.348
IDEX 0.263 0.203 0.269 0.371 0.269 0.275

ACCLR

Cell-IR 0.382 0.395 0.386 0.435 0.426 0.405
Ab-IR 0.449 0.419 0.450 0.480 0.420 0.443
IDEX 0.399 0.389 0.396 0.466 0.408 0.411

Table 4. Bias and dispersion (�s.e.) of GEBVs for the three immune competence traits, namely, cell-mediated immune
response (Cell-IR, log-transformed), antibody-mediated immune response (Ab-IR; square-root transformed) and

ImmuneDEX (IDEX), when each YOB cohort was used as the validation population

Trait YOB cohort (number of animals)
2012

(n = 497)
2013

(n = 418)
2016

(n = 1220)
2017

(n = 925)
2018

(n = 655)

Bias
Cell-IR –0.109 ± 0.098 0.130 ± 0.080 0.008 ± 0.065 0.034 ± 0.062 –0.048 ± 0.081
Ab-IR –0.157 ± 0.299 –0.283 ± 0.269 –0.155 ± 0.201 –0.193 ± 0.230 –0.133 ± 0.250
IDEX –0.016 ± 0.013 0.002 ± 0.010 –0.004 ± 0.009 –0.004 ± 0.009 –0.008 ± 0.010

Dispersion
Cell-IR 0.019 ± 0.063 0.146 ± 0.043 0.190 ± 0.034 0.050 ± 0.032 0.137 ± 0.041
Ab-IR 0.026 ± 0.053 0.142 ± 0.046 –0.026 ± 0.037 0.027 ± 0.040 0.196 ± 0.042
IDEX 0.050 ± 0.063 0.210 ± 0.044 0.147 ± 0.039 0.041 ± 0.035 0.171 ± 0.041
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a h2 of 0.3 and an effective population size (Ne) of 100, the
expected GEBV accuracy is ~0.45 (fig. 3b in Goddard and
Hayes 2009). Similarly, with a reference population of 1743
Australian Angus cattle, Bolormaa et al. (2013) reported a
GEBV accuracy of 0.26 averaged across 16 traits. De Roos
et al. (2008) estimated Ne in Australian Holstein–Friesian,
Jersey and Angus cattle and found that the Ne for these breeds
has decreased over the past 50 generations, to ~100. Therefore,
averaged across the three traits, the ACCLR at 0.420 (compared
with ACCT at 0.304) is closer to the theoretical expectation.

It is worth noting that the complete dataset was used to
obtain estimates of CG fixed effects and covariates, and these
estimates were used to adjust the phenotypes of individuals in
the validation population, and with adjusted phenotypes
needed in the computation of ACCT. Animals in validation
and training sets were raised in different CGs. Therefore, the
only linkage between them is through genomic relationships
and no link was created as a consequence of using records in
the validation sets to obtain the estimates to accomplish the
precorrection.

Table 4 lists the estimates of GEBV bias and dispersion for
the three IC traits when using each consecutive YOB cohort as
the validation population. In 4 of the 15 instances (3 traits · 5
YOB cohorts), zero was not contained in the interval spanned
by bias � 1 s.e. Two of these four instances corresponded to
Cell-IR using the 2012 and 2013 YOB cohorts with negative
and positive bias respectively. This could be attributed to 2012
and 2013, being the smallest YOB cohorts and, hence, more
prone to sampling variation. To aid in the interpretation of
estimates of bias presented in Table 4, Fig. 1 shows the average
GEBV by each YOB cohort for the three immune competence
traits, Cell-IR (top panel), Ab-IR (middle panel) and IDEX
(bottom panel), estimated using either the whole data (blue
bars and termed ûw) or partial data (orange bars and termed ûp)
where the phenotypes of the YOB cohort were treated as
missing values. Only for Cell-IR and YOB cohort 2012 and
2013 were the GEBV on the basis of whole or partial data in
opposite sign, on average.

Similarly, the estimates of GEBV dispersion for Cell-IR
and IDEX show that in four of the five YOB cohorts, the
interval spanned by dispersion � 1 s.e. was on the positive
side, indicating overdispersion. This overdispersion can be
attributed to higher h2 estimates when phenotypes of the YOB
cohort were treated as missing values compared with h2

estimates using the whole dataset (Fig. 2).
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Fig. 1. Average GEBV by each YOB cohort for the three immune
competence traits, Cell-IR (top panel), Ab-IR (middle panel) and IDEX
(bottom panel) estimated using either the whole data (blue bars) or partial
data (orange bars) where the phenotypes of the YOB cohort were treated
as missing values.
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Fig. 2. Heritability estimates for the three immune competence traits,
Cell-IR (blue bars), Ab-IR (orange bars) and IDEX (grey bars), by each
YOB cohort where the phenotypes of the YOB cohort were treated as
missing values. Horizontal bars correspond to estimates obtained using the
whole dataset (Table 2).

Genomic predictions for immune competence Animal Production Science 1923



Conclusions

In conclusion, the current study expands on our recently
published study introducing ImmuneDEX (Reverter et al.
2021) in four major aspects, as follows: (1) that earlier work
focused on the analytical methodology to combine both metrics
of immune competence, cell- and antibody-meditated immune
response into a single metric, namely ImmuneDEX; (2) the
sample size has increased by 30% (or from 2853 before to
3715 now); (3) we now use genomic information to estimate
genetic parameters; and (4) we place emphasis on the quality of
the resulting GEBVs on the basis of their accuracy, bias and
dispersion and using YOB cohorts in a cross-validation scheme
to generate the testing populations that, while all comprising
Australian Angus cattle, are very poorly related among
themselves.

Taken together, and consistent with previous findings,
immune competence phenotypes are moderately heritable
and accurate GEBVs can be generated for immune
competence to allow for selection of cattle with an
improved ability to mount an immune response. Our
analyses suggest that ImmuneDEX will provide a tool to
underpin long-term genetic strategies aimed at improving
the immune competence of animals in production systems,
which in turn is expected to reduce the incidence of disease and
our reliance on antibiotics to treat disease.
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