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Abstract
Context.Advances in automated oestrus detection havemade this an attractive technology to help reducemanual oestrus

detection labour on dairy farms.
Aims. A decision-support tool was created to help farmers estimate the investment outcome of adopting automated

oestrus detection technologies in a seasonal dairy production system.
Methods.Adecision-support tool was created using Excel 2011 (Microsoft Inc., Redmond,WA,USA). The tool allows

farmers to input both current herd reproductive management costs and performance and automated oestrus detection
technology system costs and performance to receive herd-specific estimates of investment benefit. The investment analysis
outputs include the net present value (NPV), internal rate of return (IRR), and payback period associated with automated
oestrus detection adoption. Two different automated oestrus detection technologies were compared with visual oestrus
detection aided by tail paint with a 72.0% oestrus detection rate (sensitivity) to demonstrate the value of the investment
analysis tool. The alternative scenarios, technology one and technology two, were compared over an eight-year investment
period.

Key results.Technologyone,with a 62.4%oestrus detection rate, resulted in a negativeNPVand IRR (–NZ$182 567and
–100% respectively), indicating a poor investment. Technology two, with an oestrus detection rate of 91.0%, provided a
positive NPV and IRR (NZ$177 890 and 38.7% respectively), indicating a beneficial investment. The payback period for
technology one was estimated as >10 years, whereas technology two’s payback period was <1 year.

Conclusions. The investment tool results are dependent on farm-specific and automated oestrus detection inputs.
Implications. Farmers can use farm-specific inputs in the tool to aid themwhen considering adoption of new automated

oestrus detection technologies.
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Introduction

Calving in seasonal, pasture-grazed, dairy farming acts to align
herd feed demandwith pasture availability, therefore conception
date and calving date are key factors in optimising production. In
seasonal calving dairy herds, when an individual cow calves
relative to the herd’s planned mating commencement date is a
major determinant of reproductive success (Alawneh et al.
2012). Farm personnel generally detect cows in oestrus by
observing signs of oestrus-related behaviour; for example,
willingness to stand while being mounted (Eradus et al. 1992;
Kamphuis et al. 2012). Tail paint and mount detectors (e.g.
scratch-off or pressure-activated devices placed on the tail head

of the cow to detect mounts by other cows) are common aids for
visual oestrus observation (Macmillan andCurnow1977). These
tools allow personnel to observe worn paint or activated mount
detectors as a sign that the cowwas in oestrus. Larger herd sizes,
lack of labour, and untrained personnel can make visual
observation challenging, even with aids (Holmann et al. 1987;
Alawneh et al. 2006; Olynk and Wolf 2009). Additionally,
oestrus is increasingly difficult to observe in the modern dairy
cow with shorter and less intense oestrus periods (Reames et al.
2011; Homer et al. 2013).

Depending on variables such as herd size, technology cost,
detection rates and labour rates, automated oestrus detection
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technologies can increase the success of oestrus detection and
decrease labour costs (Olynk andWolf 2009; Rutten et al. 2014;
Dolecheck et al. 2016). Differing on-farm cost structures,
reproductive performance levels, management ability, and
other economic factors make different reproductive
management programs attractive to farmers (Holmann et al.
1987; Olynk and Wolf 2008, 2009). In general, the decision
of a farmer to invest depends on the expected profitability of the
investment, the farm’s financial position,market prospects, farm
size and the presence of a potential farm successor (Aramyan
et al. 2007). Investments in precision technologies have shown to
be impacted by uncertainty regarding technology performance,
the presence of after-sales support, and the need for new skills
among the farm team (Eastwood et al. 2016).

The objective of this study was to create a decision-support
tool to estimate the investment outcome of adopting automated
oestrus detection technologies in a seasonal dairy production
system. The investment decision-support tool can be used to
compare current reproductive performance to estimated
performance after automated oestrus detection technology
adoption. The Economics of Reproductive Performance Tool
ver.NZ2.0 (DairyNZLtd2018)wasusedas abase to estimate the
reproductive value of adopting an automated oestrus detection
technology through changes in a herd’s 6-week in-calf rate and
12-week not-in-calf rate. Two example investment analyses
were conducted considering a collar-mounted activity
monitoring technology or an automated camera-based oestrus
detection technology to demonstrate model functionality.

Materials and methods

The investment outcome of transitioning from visual oestrus
detection based reproductive management to automated oestrus
detection was examined via a decision-support tool using a
partial budget analysis. The decision-support tool was created
usingExcel 2011 (Microsoft Inc., Redmond,WA,USA) andwas
separated into three specific sheets: adjustable user inputs,
automated oestrus detection technology calculations and
results. The input sheet was created for users to enter herd
size, current reproductive performance information, labour
time, and labour costs (NZ$ per hour). Additionally,
information about potential automated oestrus detection
technologies was entered into the input sheet. The input sheet
captured details for current and proposed oestrus detection
options including reproductive management costs, expected
reproductive performance, assumptions for the gap
calculations, and investment terms. Information from the
inputs sheet was linked into the automated oestrus detection
calculations sheet to calculate the reproductive management
costs both before and after a proposed investment in
automated oestrus detection.

Reproductive management costs
Reproductive management costs included the automated oestrus
detection technology start-up cost, automated oestrus detection
technology maintenance cost, oestrus detection aid cost and
labour. The automated oestrus detection technology start-up
costs included the hardware needed for the automated oestrus
detection technology; no start-up cost was assumed for

non-automated oestrus detection. The automated oestrus
detection technology maintenance cost included a yearly fee
charged by the technology manufacturer for upkeep; no
maintenance cost was assumed for non-automated oestrus
detection. The oestrus detection device cost for non-automated
oestrus detection would be tail paint, mount detectors, or nothing
in the case of visual observations alone. For consumables like tail
paint and mount detectors, the inputs needed for the model
included the mean number used per cow during a breeding
season and the cost per item (i.e. total cost of consumables
per year = herd size · number of visual detection devices used
per cow per year · price per visual detection device). The oestrus
detection device cost when using automated oestrus detection
technologies would be the cost of the individual device. The
investment tool used the farmer’s technology inputs to compute
the total initial automated oestrus detection technology cost as:

TIC ¼ Startþ ðDeviceCost ·HSÞ
where TIC is the total initial investment cost (NZ$), Start is
the start-up cost of the automated oestrus detection technology
(NZ$), DeviceCost is the oestrus detection device cost per unit
(NZ$) and HS is herd size.

For automated oestrus detection devices placed on an
individual animal, an additional cost was added to account for
replacing non-reusable, faulty, damaged, or lost oestrus
detection devices. The cost to replace oestrus detection
devices each year was calculated as:

ReplaceDevices ¼ HS·ReplacePctð Þ ·DeviceCost
where ReplaceDevices is the cost to replace oestrus detection
devices each year (NZ$) and ReplacePct is the percentage of
oestrus detection devices to replace per year (%).

Because labour requirements vary during the breeding
season, three different labour periods were defined: pre-
mating, artificial breeding (AB) and bull mating. The pre-
mating period was a period where observation and recording
of cows in heat was conducted to confirm reproductive cyclicity.
The AB period was a period of active breeding by artificial
insemination. The bull mating periodwas a period of bull mating
for cows not pregnant after the AB period. Within the model,
users could define the length of each period and several labour
hours per week for each of the three periods. Additionally,
different labour rates could be defined for each labour period
to account for the increased cost of more skilled staff during
certain labour periods (e.g. during the AB period). The cost of
labour for each labour period was calculated by multiplying the
number of labour hours needed per week for that period (pre-
mating, AB, or bull breeding), the labour rate, and the length of
that period (pre-mating, AB, or bull breeding) in weeks. The
costs of pre-mating labour, AB labour, and bull mating labour
were summed to calculate total labour costs. The total labour
costs before and after automated oestrus detection technology
adoption were calculated using different inputs for labour
required per period. The difference between the cost of labour
for visual oestrus detection (pre-automated oestrus detection
technology adoption) and the cost of labour required for the
automated oestrus detection technology represented the amount
a farmer could save in labour costs.
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Reproductive performance calculations
Themodel calculated both the current reproductive performance
and the reproductive performance if the farmer were to invest in
an automated oestrus detection technology. The user is able to
select eitherABmating or bullmating for eachweek of breeding,
up to 12weeks. This was included to give the farmer an option to
assess an alternative breeding program, such as an extended AB
periodusingautomatedoestrusdetectionandeliminating thecost
and potential health and safety risks associated with bulls. The
pregnancy rate was calculated separately for AB and bull mating
as theproduct of oestrus detection rate andconception rate during
each period (as defined by the user). The percent of cows
pregnant after three weeks, cycle one, was calculated as:

PregCycle1 ¼ ðHS · PRÞ
HS

where PregCycle1 is the percentage of cows pregnant after first
cycle (%) and PR is the pregnancy rate (%).

The percentage of cows that became pregnant after the first
cycle was used to determine the number of cows eligible to be
bred during the next week (i.e. nonpregnant cows), which in turn
was used to calculate the percent of cows pregnant after
each week:

%Pregn ¼
HS� ðHS·PPÞ · PR

3

� �þ ðHS·PPÞ
HS

where %Preg is the percentage of cows pregnant after week n (4
to 12) and PP is the percentage of cows pregnant at the end of the
previous week (%).

The total percent of cows pregnant after week six and twelve
for both the current oestrus detection methods and automated
oestrus detection were used in the Economics of Reproductive
Performance Tool ver. NZ 2.0 (DairyNZ Ltd 2018).

Economics of reproductive performance tool
The Economics of Reproductive Performance Tool ver. NZ 2.0
(DairyNZ Ltd 2018), also known as the gap calculator, was used
to compare the herd’s level of overall reproductive performance
to a target value and to estimate the opportunity for increasing
operating profit through improved reproductive performance.
The 6-week in-calf and 12-week not-in-calf gap values were
calculated as:

6WeekGap ¼ Desired6WeekRate� Actual6WeekRateð Þ
· 6WeekPctValue ·HS and

12WeekGap ¼ Desired12WeekRate� Actual12WeekRateð Þ
· 12WeekPctValue ·HS

where 6WeekGap is the 6-week in-calf rate gap value (NZ$),
Desired6WeekRate is the desired 6-week in-calf rate (%),
Actual6WeekRate is the actual 6-week in-calf rate (%),
6WeekPctValue is the value per percent change in 6-week in-
calf rate (NZ$), 12WeekGap is the 12-week in-calf rate gapvalue
(NZ$), Desired12WeekRate is the desired 12-week in-calf rate
(%), Actual12WeekRate is the actual 12-week in-calf rate (%)
and 12WeekPctValue is value per percent change in 12-week in-
calf rate (NZ$).

The sum of the 6-week in-calf rate gap value and the 12-week
not-in-calf gap value was the total reproductive gap value. The
total reproductive gap value gives the farmer a dollar amount
per year that the herd would be able to generate by obtaining the
target proportion of cows in-calf within the defined mating
period. The gap calculator was used to estimate the total
reproductive gap value both before and after the adoption of
an automated oestrus detection technology. The differences in
the values before and after the adoption were compared to
estimate the value of automated oestrus detection technology
adoption.

Investment analysis
The investment analysis outputs from the model included net
present value (NPV), internal rate of return (IRR), and payback
period associated with automated oestrus detection technology
adoption. For the investment analysis, a farmer would need to
define the length of the investment term and the residual value.
The investment term should be equal to the expected life of
the technology (in years). The residual value reflects what the
automated oestrus detection technology could be worth at the
end of the investment term.

The NPV was used to compare investment in the automated
oestrus detection technology to future cashflows. If theNPVwas
greater than zero, this indicated a good investment. The change in
cash flow for each year consisted of the financial difference
between the current oestrus detection method and automated
oestrus detection, including costs associated with both
reproductivemanagement and overall reproductive performance:

NPV ¼
XN

t¼0

CF

ð1þ DRÞt
� �

� TIC

where NPV is the net present value of the automated oestrus
detection technology over the investment period, n is the number
of years in the investment period, t is the year of investment,CF is
the cash flow at period t and DR is the discount rate.

The IRR can help a farmer understand the level of potential
value associated with each investment option with comparable
capital and risk. The IRR is calculated by setting the NPV
equation equal to zero and solving for the discount rate. For
the calculated IRR to be attractive for the farmer, the IRR should
be greater than the discount rate considered. The IRR is useful for
comparing multiple available automated oestrus detection
technologies. Finally, the payback period, or number of years
to break even, identified the point in time where the cost of the
initial investment was returned. Each of these financial measures
(NPV, IRR and payback period) needs to be evaluated across
various scenarios when assessing the risk of a potential
investment (Brigham 1985).

Investment analysis example
An investment analysis was conducted to demonstrate the
functionality of the decision-support tool. Base herd input
assumptions are shown in Table 1. Two different types of
automated oestrus detection technologies were compared:
technology one and technology two. Technology one was a
collar-mounted sensor used to monitor a cow’s change in
activity, which can be associated with oestrus (Dela Rue et al.

2282 Animal Production Science E. B. Thomas et al.



2014). Technology two used a camera and image analysis to
determine when mount detection patches were activated as
evidence that cows were in oestrus. The adjustable
reproductive management strategy inputs were set to those in
Table 2. Oestrus detection rates, representing sensitivity, were
assumed to be 72.0%, 62.4%, and 90.5% for visual oestrus
detection aided by tail paint, technology one, and technology
two, respectively, based on estimates found in the literature

(Jago et al. 2011; Kamphuis et al. 2012). Specificity was
assumed identical across all scenarios. These performance
levels were chosen to demonstrate how a range in
performance affected the investment outcome and are not
necessarily representative of current technology. The number
of labour hours fluctuated depending on the premating, AB, or
bull mating period and on the reproductive management strategy
used (Table 3). Technology two required more hours of labour
than technology one because the mount detectors are non-reusable
and must be replaced after activation or when missing.

The estimated price of each oestrus detection device per cow
for visual oestrus detection, technology one, and technology two
was NZ$2.00, NZ$160.00 and NZ$2.00 respectively. The price
per oestrus detectiondevice for the visual oestrus detection strategy
covered the cost of tail paint use. Cows expected to come into
oestrus were assumed to be marked with tail paint and visually
observed. Technology one required a wearable unit for each cow,
whereas technology tworequiredonlyamountdetectorper cowbut
was associated with a larger total initial investment cost than
technology one (NZ$20 000 vs NZ$10000) for the installation
of a camera to scan and detect activated mount detection patches.
Annual oestrus detection device replacement depended on the
reproductive management strategy being used (Table 2).

Gap calculator
The price per percentage point of the 6-week in-calf rate gap was
set to NZ$4.00 and the price per percentage point of the 12-week
not-in-calf rate was set to NZ$10.00. These values assumed a
price of NZ$5.50 per kg milk solids and a NZ$1000
value differential between a not-in-calf and in-calf cow
(DairyNZ Ltd 2018). The NZ$4.00 and NZ$10.00 are subject

Table 1. Herd inputs for current reproductive management, desired
reproductive performance, length of mating periods, and investment
assumptions chosen to represent a normal New Zealand grazing dairy

herd
Herd inputs were applied in an investment analysis of automated oestrus

detection technologies. AI, artificial insemination

Input ValueA

AI conception rate (%) 52.2
Bull conception rate (%) 48.0
Bull oestrus detection rate (%) 95.0
Desired 6-week in-calf rate (%) 78.0
Desired 12-week not-in-calf rate (%) 6.0
Discount rate (%) 8.0
Herd size (cows) 415
Investment length (years) 8
Length of artificial breeding period (weeks) 6
Length of bull mating period (weeks) 6
Length of pre-mating period (weeks) 4
Price per % 12-week not-in-calf rate gap (NZ$) 10.00
Price per % 6-week in-calf rate gap (NZ$) 4.00

AB. Dela Rue, pers. comm.

Table 2. Automated oestrus detection technology inputs used in an investment analysis example for New Zealand grazing dairy herds

Reproductive
management
strategyA

Start-up
cost
(NZ$)

Oestrus detection
device cost

(NZ$)

Total initial
investmentB

(NZ$)

Oestrus
detection
rate (%)

Conception
rate (%)

Oestrus detection
devices to replace

per year (%)

Maintenance
cost
(NZ$)

Residual
value
(NZ$)

Visual detection 0 2 830 72.0 52.2 150 0 0
Technology one 10 000 160 76 400 62.4 52.2 5 0 0
Technology two 20 000 2 20 830 90.5 52.2 150 300 0

AVisual detectionwas visual oestrus observation aidedby tail paint. Technologyonewas collar-mounted activitymonitors. Technology twowas a camera-based
automated oestrus detection technology that identified activated mount detection patches that were non-reusable.

BTotal initial investment was calculated as the herd size (Table 1) multiplied by the oestrus detection device cost, plus the start-up cost.

Table 3. Amount (hours/week) and rate (NZ$) of labour used in an automated oestrus detection technology
investment analysis example for New Zealand grazing dairy herds

Reproductive
management
strategyA

Labour for
pre-mating
(h/week)

Labour for
artificial
breeding
(h/week)

Labour for
bull mating
(h/week)

Pre-mating
labour
rate

(NZ$/h)

Artificial breeding
labour
rate

(NZ$/h)

Bull mating
labour
rate

(NZ$/h)

Visual detection 4 16 1 22 35 22
Technology one 1 4 1 22 35 22
Technology two 3.5 6 1 22 35 22

AVisual detection was visual oestrus observation aided by tail paint. Technology one was collar-mounted activity
monitors. Technology two was a camera-based automated oestrus detection technology that identified activated mount
detection patches that were non-reusable.
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to varywith changes inmilk price or changes in the valueof a not-
in-calf cow. Decision-support tool users can adjust these values
as needed.

Results and discussion

Reproductive performance

The reproductive performance results highlight the difference
between visual oestrus detection aided by tail paint, technology
one, and technology two in relation to in-calf and not-in-calf
rates. Greater in-calf rates and lower not-in-calf rates represent
improved reproductive performance. The conception rate was
held constant for all reproductive management strategies.
Therefore, the differences are the result of changes in oestrus
detection rate alone, which can be defined and adjusted by the
user. Using inputs from Tables 1 and 2, the 6-week in-calf rates
were 58.2%, 52.2%, and 68.5% for visual oestrus detection aided
by tail paint, technology one, and technology two respectively.
The 12-week not-in-calf rateswere 16.0%, 18.0%, and 11.7% for
visual oestrus detection aided by tail paint, technology one, and
technology two respectively. The lower oestrus detection rate
associated with technology one (62.4%) resulted in inferior
reproductive performance than either visual oestrus detection
aided by tail paint (oestrus detection rate = 72.0%) or technology
two (oestrus detection rate = 90.5%). The oestrus detection rate
assumed for technology two (90.5%) was greater than
assumptions used in other automated oestrus detection
investment analyses which assumed oestrus detection rates of
80%or less (Rutten et al. 2014;Dolecheck et al. 2016).However,
the 90.5%valuewas collected from a previously published, New
Zealand based study (Jago et al. 2011), andmay be plausible in a
grazing-based, lowproduction systemcomparedwith thehigher-
production systems assumed in previous work (Rutten et al.
2014; Dolecheck et al. 2016).

Failure to achieve efficient oestrus detection limits
reproductive performance (Burke et al. 2012). With new
technology available, there is potential for oestrus detection to
be improved (Fricke et al. 2014). However, this depends on the
relative success of oestrus detection by the new technology
compared with the current reproductive management strategy
(Rutten et al. 2014; Dolecheck et al. 2016). Only if the new
automated oestrus detection technology improves the oestrus
detection ratewill reproductive performance improve.However,
little or no improvements in reproductive performance using the
technology may be acceptable to the farmer if other benefits are
provided (i.e. less labour, alternative labour opportunities,
improved quality of life) as discussed by Eastwood et al. (2016).

Labour

The total labour cost was NZ$3844, NZ$1060 and NZ$1700
per year for visual oestrus detection, technology one, and
technology two respectively. Technology one was associated
with the lowest labour costs because the collar-activity monitors
tracked the cows’ activity to detect oestrus and did not need to be
replaced as frequently as the mount detector needed for
technology two. The labour cost associated with technology
one may be more appealing to a farmer than technology two;
however, other factors (i.e. oestrus detection rate, total initial

investment cost and cash flow) need to be considered when
evaluating an automated oestrus detection technology.

Both automated oestrus detection technologies decreased the
number of labour hours needed compared with visual oestrus
detection aided by tail paint. However, most farmers conduct
visual oestrus detection while performing another task, such as
milking or collecting cows (Rutten et al. 2014), making
estimation of any labour savings associated with automated
oestrus detection difficult. Labour costs need to decrease
considerably to impact profitability of investing in automated
oestrus detection technologies (Rutten et al. 2014).However, the
use of automated detectionmay compensate for less well trained
staff in farm teams (Edwards et al. 2015).

Investment analysis

The NPV, IRR and payback period were used to evaluate the
investment potential of both automated oestrus detection
technologies (Table 4). The negative NPV associated with
investment in technology one (–NZ$18 2567) indicates that
the farmer should not invest. The positive NPV associated
with investment in technology two (NZ$17 7890) indicates
the potential value added to the farm. Similarly, the positive
IRR of technology two solidifies a much greater return on the
investment than technology one (38.7% vs –100.0%). An
investment in technology one was estimated to take longer
than 10 whereas technology two would take <1 year
(0.60 years) to break even. Previous investment analyses have
assumed that the lifetime of an automated oestrus detection
technology varies from 7 (Dolecheck et al. 2016) to 10 years
(Rutten et al. 2014). Reaching the break-even point before the
end of the technology’s usefulness is ideal. Technology one
resulted in a decreased oestrus detection rate compared with
technology two (62.0% vs 90.5%) and in a greater total initial
investment cost (NZ$76 400 vs NZ$20 830) because of the
oestrus detection device prices. These two factors contributed
to its negativeNPV, negative IRR, and longer time to break even.

Dolecheck et al. (2016) similarly found that management and
technology assumptions influence whether an investment in
automated oestrus detection will be profitable or not. When
considering 24 different investment scenarios, payback period
ranged from1.6 to>10.0 years. Rutten et al. (2014) found that the
IRR associated with investing in automated oestrus detection
ranged from –2.0% at the lowest oestrus detection rate tested

Table 4. The net present value (NPV), internal rate of return (IRR),
andpaybackperiodassociatedwith investing in twodifferent automated
oestrus detection technologies on a New Zealand grazing dairy herd

currently using visual oestrus detectionA

Reproductive
management
strategy

NPV
(NZ$)

IRR
(%)

Payback
period
(years)

Technology one –182 567 –100.0 >10.0
Technology two 177 890 38.8 0.6

AVisual oestrus detection was visual oestrus observation aided by tail paint.
Technology one was collar-mounted activity monitors. Technology two
was a camera-based automated oestrus detection technology that identified
activated mount detection patches that were non-reusable.
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(65.0%) to 13.0% at the highest oestrus detection rate tested
(95.0%). However, investment in automated oestrus detection in
a seasonal dairy system is expected to produce different results
because of the differing breeding requirements.

Sensitivity analysis

Because automated oestrus detection rates are not guaranteed,
sensitivity analyseswere run to account for possible variations in
oestrus detection rates for each technology. A range in oestrus
detection rate from 10% less than to 10% more than the original
inputs (Table 2) influenced both the NPV and payback period
results. As the oestrus detection rate for each technology
increased, NPV improved because the total reproductive gap
value decreased (Fig. 1a). However, theNPV for technology one
remained negative up to an oestrus detection rate of 72%. By
using the ‘Goal Seek’ function of Excel, we identified that
technology one oestrus detection rate would have to reach
79% for the NPV to reach zero.

Regardless of the oestrus detection rate assumption used
(–10% to +10% of the original input), the technology one
payback period was longer than 10 years. The low labour cost
of technology one was never able to offset the high total initial
investment cost and low oestrus detection rate in these scenarios.

Again, the ‘GoalSeek’ function ofExcelwasused to identify that
technology one oestrus detection ratewould have to reach 76.0%
for the payback period to be equal to the assumed investment
length (8.0 years). Therefore, a 76.0% oestrus detection rate
could be considered the performance threshold required for these
types of technologies to break even in a seasonal dairy system, if
the lifetime of the technology is at least 8 years. Dela Rue et al.
(2014) has shown that collar-based technologies can reach this
76.0% oestrus detection rate threshold, indicating that there is
potential for these types of technologies to be profitable. When
considering variation in the oestrus detection rate, payback
period for technology two ranged from 0.4 to 1.1 years
(Fig. 1b). The greater the oestrus detection rate, the less time
needed for technology two to break even.

In addition to the automated oestrus detection technology
oestrus detection rate, many other farm specific factors will
influence the value of investment. To evaluate some of these
factors, changes in herd size, visual oestrus detection rate, and
length of the AB period were evaluated as outlined in
Table 5. Increasing or decreasing the herd size had minimal
overall effects on the value of both technologies because most
technology related costs were calculated per cow. Conversely,
changes in either thevisual oestrous detection rate or the lengthof
the AB period had much greater effects on the NPV per cow. As
the visual oestrus detection rate decreased, the value of both
technologies increased and as the visual oestrus detection rate
increased, the value of both technologies decreased. This follows
the assumption that a herd with better reproductive management
before technology adoption would see less value from the
investment. Finally, as the length of the AB breeding period
increased from 4 weeks to 12 weeks the value of technology one
decreased whereas the value of technology two increased. The
difference in response for each technology resulted from the
pregnancy rate (oestrus detection rate multiplied by the
conception rate) for technology one being lesser than the bull
mating pregnancy rate (32.6%vs. 45.6%)whereas the pregnancy
rate for technology two was greater (47.2%). Therefore, using
technology two for a longer period of time (i.e. increasing theAB
breeding period) would be valuable, whereas using technology
one for a longer period of time would not be.

The results of the sensitivity analyses emphasise that different
herds will see more or less value from investing in automated
oestrus detection technologies, depending on their current
reproductive management situation and the expected
technology performance. Similarly, both Rutten et al. (2014)
and Dolecheck et al. (2016) concluded that herd-specific
calculations are needed when evaluating the value of
automated oestrus detection technologies. Using tools like the
decision support tool developed in this study is valuable because
they are able to be customised to individual herd scenarios.

Model limitations

This investment decision-support tool uses only a partial budget
and individuals should consider its limitations before use. The
model does not account for factors such as changes in the number
of replacements produced that could add more value to the herd.
The automated oestrus detection technology could also be
beneficial in other management areas such as detecting
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Fig. 1. Sensitivity of the net present value (a) and payback period
(b) associated with investment in automated oestrus detection
technologies to changes in oestrus detection rate (sensitivity) of the
technology. Technology one was a collar-mounted activity monitoring
system with an original oestrus detection rate of 62.4%. Technology two
was a camera-based automated oestrus detection technology that identified
mount detection patches that were non-reusable with an original oestrus
detection rate of 90.5%. Both were compared with visual oestrus detection
aided by tail paint with an oestrus detection rate of 72.0%.Values considered
in the sensitivity analysis were�5% and�10% of the technology’s original
oestrus detection rate. Payback period was �10 years in all technology one
scenarios (data not shown).
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disease and calving; these factors were not accounted for in our
model.Additionally, themodel needs accurate input information
from both the user and technology companies to calculate
accurate results. However, the exact values found by the
model are less important than the overall ranking of different
oestrus detection methods.

Conclusions

Adecision-support toolwas created to evaluate the economics of
adopting automated oestrus detection technologies in a seasonal
dairy production system. Farmers can use farm-specific inputs in
the tool to aid themwhen considering adoption of newautomated
oestrus detection technologies. The main financial benefits
associated with adopting automated oestrus detection
technologies are the decrease in labour costs and
improvements in 6-week in-calf rate and 12-week not in-calf
rate. In an investment analysis example, the technology that
improved oestrus detection rate above visual oestrus detection
aided by tail paint improved reproductive performance andwas a
positive investment opportunity. Additionally, the use of either
tested automated oestrus detection technology reduced the total
cost of labour for a breeding season comparedwith visual oestrus
detection aided by tail paint.
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