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Abstract.

As a tissue, muscle has the unique ability to switch its metabolic source of ATP, the energy currency

underpinning muscle function. During oxygen debt, such as that occurring immediately following the death of animals,
anaerobic metabolism is initiated in an attempt to restore homeostasis within the muscle. The cascade of biochemical events
that are initiated is paramount in the context of meat quality. This review revisits this reasonably well-known subject but takes
anew perspective by drawing on the understanding outside the traditional discipline of meat science. Our understanding of
the intrinsic regulators of glycolytic flux has improved but knowledge gaps remain. Further efforts to understand how the
glycolytic enzyme kinetics are influenced by both pre- and post-slaughter factors will be beneficial in the ongoing quest to

maximise fresh meat quality.
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Introduction

Transformation of muscle to meat involves several physiological
and biochemical processes evoked by the animal and its tissues
in a futile attempt to reinstate homeostatic control. The
magnitude, extent, and timing of these responses before,
during or post-slaughter can dramatically affect meat quality
development. In order to ensure consistent production of the
highest quality meat possible, those involved in the meat industry
must understand these biological processes and implement
management practices that optimise them.

Any effort to understand post-mortem muscle biochemistry
should begin with an appreciation for how energy is managed
in living muscle, especially under conditions where this highly
specialised tissue functions. Muscle cells are uniquely organised
and designed to convert chemical energy into movement.
Muscle shortens in response to neuronal stimulations that
ultimately cause calcium release in the sarcoplasm. Once
calcium concentration eclipses a regulatory threshold, myosin
and actin interact to create movement through consumption of
ATP (via myofibrillar ATPase). Because of the immediate
and synchronised nature of contraction and its sensitivity to
calcium, ATP-mediated calcium pumps are strategically
located throughout the muscle cell on membranous vesicles
that rapidly sequester calcium after such a twitch or
contraction. These ATPases, as well as those responsible for
maintaining membrane potentials and those participating in a
myriad of other cellular processes, must function continually;
yet under normal resting conditions, energy consumption
(ATP turnover) is rather modest, particularly in locomotive
muscles, because the major motor proteins remain idle. By
contrast, working muscle cells are capable of increasing ATP
turnover 100-fold (Hochachka and McClelland 1997).
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This highly efficient and robust means of providing ATP
rapidly in working skeletal muscle cells is retained, at least in
part, during the transformation of muscle to meat. Indeed, it is
exactly these unique capabilities that spring into action at
slaughter in muscle; however, due to circulatory failure,
muscle tissues simply lack sufficient oxygen to maintain a
high level of ATP generation. When the concentration of ADP
increases in living muscle, glycolytic flux increases (Cheetham
et al. 1986; Crowther et al. 2002), as it does in post-mortem
muscle (Kastenschmidt ef al. 1968). Conversely, in the presence
of sufficient oxygen or at a steady-state level of exercise,
pyruvate is directed to the mitochondria and is further
metabolised (oxidation) in the matrix to support the hydrogen
ion gradient between the inner and outer membranes, which in
turn synthesises ATP (Conley et al. 2001). This process changes
rapidly under non-steady-state exercise, where consumption of
ATP exceeds the capacity of the cell to re-synthesise ATP. This
is quite similar to that which occurs in post-mortem muscle
(Scheffler ef al. 2011). At this point, pyruvate no longer enters
the mitochondria because the electron transport chain stops
functioning, and lactate and hydrogen ions accumulate. In
humans that stop exercising, lactate and hydrogen ions are
removed from the cell by the monocarboxylate transporter
and homeostasis is once again established (Sahlin 1978; Juel
et al. 2004). This is not the case in post-mortem muscle. Rather,
lactate and protons accumulate and muscle pH decreases
ultimately to a level generally found in fresh meat (Briskey
et al. 1966).

Clearly, much is known about post-mortem energy
metabolism and the conversion of muscle to meat (e.g. see
reviews by Bendall 1973; Pdso and Puolanne 2005; England
et al. 2013). However, gaps still exist in our understanding of
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this critical process. Significant further insight can be garnered
by taking advantage of the literature (e.g. exercise physiology)
outside the discipline of meat science. Given the central
importance of pH decline to meat quality development, the
aim of this review was to re-examine this central dogma with a
slightly different perspective, particularly with regard to the
ruminant. We review the current knowledge of muscle energy
metabolism, post-mortem biophysical changes and the relevance
to meat quality. Further, we examine how animal-related factors
and pre- and post-slaughter practices influence post-mortem
glycolysis and subsequent meat quality.

Post-mortem energy metabolism and meat quality

There is substantial evidence to show that consumers rate
tenderness as the most important of all palatability traits,
especially for fresh beef (e.g. Huffman et al. 1996; Watson
et al. 2008). Tenderness is also essential to lamb consumers
but trails flavour/odour as the highest rated consumer attribute
(Pethick et al. 2006). Post-mortem energy metabolism or
glycolysis in muscle is highly relevant to ultimate meat
quality, particularly tenderness. Typically, estimates of
glycolytic rate in post-mortem muscle are obtained from
measurements of pH over time. The rate of glycolysis post-
mortem can profoundly influence two central mechanisms,
which ultimately govern myofibrillar tenderness, notably, the
degree of myofibrillar contraction and the rate and extent of
proteolysis during ageing (Ferguson et al. 2001; Koohmaraie
and Geesink 2006). Moreover, the combination of rapid
glycolytic rates post-mortem at high muscle temperatures can
compromise muscle protein integrity, which subsequently leads
to losses in visual appeal and meat functionality (e.g. Simmons
et al. 1996).

Although the rate of post-mortem glycolysis in both bovine
(Butchers et al. 1998) and ovine (McGeehin et al. 2001) muscle
can vary between animals, the regulatory mechanisms and
extrinsic factors governing this variation are not well defined.
Intrinsically, the kinetic properties of the individual ATPases
govern post-mortem glycolytic rate (Bendall 1978). In muscle,
several ATPases are central to muscle contraction and cell
maintenance. However, the relative activities of the individual
ATPases, aside from those directly responsible for calcium
homeostasis, have not been investigated in detail with regard
to rigor development.

After slaughter, the rate of glycolysis can be dramatically
accelerated through the application of electrical stimulation, a
technology specifically designed for rapid chilling of beef
carcasses without the risk of cold shortening occurring. The
interesting feature of electrical stimulation is that, in addition
to the large initial rate change during stimulation, it also results
in a faster rate of glycolysis subsequent to stimulation (Horgan
and Kuypers 1985; Daly 1997).

Rigor biochemistry and associated biophysical
changes in muscle

With the cessation of blood supply to the musculature, a
complex cascade of biochemical events ensues, resulting in
significant structural changes. The structural changes are
biphasic, characterised by general stiffening or loss in
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inextensibility as the muscle enters rigor, followed by a phase
of partial rigor attenuation. The extent and rate of these
biochemical and subsequent structural changes are critical in
terms of the visual appearance and/or palatability, in particular,
the tenderness/toughness of meat.

The following summarises the primary biochemical and
biophysical changes that occur during the conversion of
muscle to meat. These are reviewed in more detail by Bendall
(1973) and Tornberg (1996).

Rigor biochemistry

With respect to the biochemistry of rigor, much of our current
knowledge stems from the pioneering work of Bendall and his
colleagues (e.g. Bate-Smith and Bendall 1947; Bendall 1951;
Bendall 1973), as well as the understanding of energy metabolism
that occurs during exercise in living muscle (reviewed by
Robergs et al. 2004). As noted above, after slaughter,
anaerobic metabolism is initiated, at some point, in order to
supply ATP for the continuation of cellular function. The
high-energy-carrying ATP molecule forms the basis for the
phosphagen system (Sahlin 1985; Kent-Braun et al. 1993). As
for most biological reactions, hydrolysis of ATP (ATP + H,O <
ADP +P;+H") essentially provides the necessary energy (AG® =
31kJ/mol) to regulate and drive muscle contraction. In living
muscle, this energy value is nearly twice (60kJ/mol) as high
because the steady-state metabolic state maintains ADP and Pi
concentrations much lower than that at equilibrium (Kushmerick
and Conley 2002). As mentioned above, bouts of exercise and
events occurring in post-mortem muscle require vast amounts
of energy in the form of ATP. The most immediate means of
maintaining or restoring ATP levels in muscle involves
phosphocreatine (PCr) as a critical ‘first response’ of the
phosphagen system. Phosphocreatine contains a phosphate
group that readily transfers to ADP via an enzyme known as
creatine kinase (creatine phosphate + ADP + H' «— creatine +
ATP). It is important to understand that this reaction consumes
a hydrogen ion and is at equilibrium because the change in free
energy with this reaction is very close to zero in vivo. Therefore,
any change on either side of the reaction will result in a
compensation (balancing) by the opposite side of the reaction.
This is particularly important during periods of recovery and
subsequent re-establishment of the PCr pool. In exercising
muscle, and certainly in the case of post-mortem muscle
tissue, PCr reserves are exhausted quickly and ADP
concentrations rise. There is evidence that the disappearance
of PCr in muscle tissue early post-mortem may be especially
relevant in development of aberrant meat quality, at least in the
pig muscle (Copenhafer et al. 2006; Scheffler et al. 2011).

In non-steady-state conditions (Connett and Sahlin 1996),
where consumption of ATP is greater than production, adenylate
kinase (AK), or myokinase generates additional ATP through
the reaction: ADP + ADP < ATP + AMP. Generation of AMP
is particularly important as will be discussed in some detail
later, because AMP is a major regulator of energy metabolism
in muscle cells (Winder and Thomson 2007). The final reaction of
the phosphagen system is mediated by AMP deaminase (AMP +
H" < IMP + NH,") and is actually coupled to the previous
reaction. Although the exact role of AMP deaminase is not
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known, it is important to understand that the latter two reactions
occur mainly when mitochondrial respiration is incapable of
supplying the necessary energy (ATP) demanded by the cells
(Lowenstein 1990; Tullson and Terjung 1991; Tullson et al.
1996). In this case, the energy status of the muscle is
compromised. Moreover, some suggest that AMP deaminase
prevents AMP accumulation in the cell and, thus, helps
facilitate  ATP generation (Hellsten et al 1999), thereby
retarding fatigue in exercising muscle. Korzeniewski (2006)
further modelled the role of these two reactions, and showed
that the effective removal of ADP reduces proton production
by anaerobic glycolysis and may help ‘delay’ a fatigue-induced
termination of glycolysis during a heavy bout of exercise.
Curiously, their models predicted that changes in AMP
deaminase under hypoxic (low oxygen levels) conditions were
capable of altering the ultimate pH of fatigued muscle by nearly
0.3 pH units—a truly remarkable change in muscle pH,
especially considering the lack of variation surrounding the
ultimate pH of meat. Regardless, these data outline the critical
changes that occur in muscle in response to a functioning
phosphagen system during a bout of exercise and show how
these reactions may alter post-mortem metabolism.

As a consequence of the aforementioned reactions, reductions
in muscle PCr and, in due course, ATP occur with a concomitant
increase and decrease in lactate and muscle pH, respectively
(Bendall 1973). The decline in muscle pH post-mortem or in
exercising muscle has commonly been attributed to the increase
in lactic acid, but this is a popular misconception, as the major
source of H' is clearly from ATP hydrolysis (see review by
Robergs et al. 2004; discussed later). The resting pH of
mammalian muscle ranges from 7.1 to 7.3 and will typically
decline non-linearly to 5.5-5.6 in post-mortem muscle (Pearson
and Young 1989). The attainment of ultimate pH coincides with
the termination of glycolysis. This has been attributed to either a
lack of available substrate (i.e. glycogen) or inactivation of one
or more of the glycolytic enzymes due to the acidic conditions
(Lawrie 1998), although the exact mechanism is yet unknown.

In his review, Bendall (1973) asserts that post-mortem pH
decline is biphasic, characterised by an initial period of minimal
change in both pH and ATP followed a phase of rapid decline
in both. The initial period is termed the ‘delay phase’ and the
conservation of ATP is attributed to the re-synthesis of ATP
from PCr and ADP. As discussed previously, this reaction
consumes a proton, and hence may buffer muscle pH decline.
The resting concentrations of PCr vary depending on species,
but a range of 18-23 umol/g was reported by Bendall (1973).
More recent estimates suggest that the concentration at slaughter
may be much lower in beef (1-2 umol/g; Hertzman et al. 1993)
and sheep (3 umol/g; Ferguson 2003) muscle. Given this and
the lack of evidence to support a delay phase, mainly in beef
m. longissimus (e.g. O’Halloran et al. 1997a; Butchers et al.
1998), the applicability and relevance of the delay phase has
been questioned in conventionally slaughtered livestock
(Ferguson 2003).

In many of the studies conducted by Bendall and his
colleagues, the muscle relaxant myanesin was administered to
the animal well before slaughter (Bendall 1973). Consequently,
as Bendall (1973) observed, there was very little involuntary
muscle contraction immediately following death. In commercial
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abattoirs, most animals endure some level of emotional stress
and physical activity immediately before slaughter. It is well
known that initiation of the adrenergic stress response causes
elevations in cAMP, which allosterically activates glycogen
phosphorylase and therefore glycolysis (Meyer and Foley
1996). Although B-adrenergic stimulation does not directly
influence PCr hydrolysis (Ren and Hultman 1989), it is highly
unlikely that PCr is spared during pre-slaughter handling, given
its high catalytic capacity (Krause and Wegener 1996). Second,
vigorous muscle contractions, particularly during the clonic
phase after stunning, are evident in most, but not all animals.
The absence of the delay phase in pH decline in conventionally
slaughtered cattle and sheep is probably due to the combined
actions of pre-slaughter stress and immediate post-stun muscle
contractions, which deplete the PCr supply and rapidly activate
glycolysis.

During the rapid phase, the ATP concentration declines
markedly during rigor. Another key biochemical feature of the
rapid phase is a rise in intracellular calcium concentration
(Jeacocke 1993; Hopkins and Thompson 2001). Although
there is consensus about this, the reported increases in
concentration have varied considerably (Dransfield 1999), and
this may in part be associated with accuracy of methods used
to quantify cytosolic calcium concentration (Mickelson and
Louis 1993). The increase in free calcium within the cytosol
during and after rigor has been attributed to altered sarcoplasmic
reticulum function specifically, leakage of calcium via ryanodine
receptors, reduced activity of the calcium pumps due to depletion
of ATP, and finally through disruption of membrane structures
(Mickelson and Louis 1993).

The duration and rate of the rapid glycolytic phase, as is the
case for most biochemical reactions, is temperature-dependent
(Marsh 1954; Cassens and Newbold 19674, 1967b; Newbold and
Scopes 1967; Bendall 1973; Hertzman et al. 1993; Daly 1997,
Ferguson 2003). However, it also important to recognise that
variations in glycolytic rate can be observed, even at constant
temperatures (Bendall 1978; Daly 1997, O’Halloran et al.
1997a). In the context of meat tenderness and other meat
quality traits (e.g. colour, water-holding capacity), the
interaction between post-mortem glycolysis and temperature in
muscle is paramount.

Rigor biophysical changes
Myofibrillar shortening

Once the ATP concentration falls to ~50% of its resting
level (5-6 umol/g), ~50% of muscle elasticity has already
been lost (Bendall 1951). In the absence of ATP, irreversible
bonds between actin and myosin form, leading to muscle
shortening and an increase in the isometric tension (Pearson
and Young 1989). The degree of shortening that occurs during
rigor is critical with respect to tenderness (Harris and Shorthose
1988). The seminal work of Locker and Hagyard (1963) clearly
demonstrated that the degree of muscle shortening (relative to
pre-rigor length) was highly dependent on the temperature at
rigor. In their study, minimal shortening (~10%) was observed
at 15—20°C in beef m. sternomandibularis. In later studies from
Sweden by Hertzman et al. (1993), Olsson et al. (1994), and
Devine et al. (1999), the evidence suggests that the optimal rigor
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temperature range might be lower, at 10—15°C, in higher quality
muscles such as the m. longissimus and m. semimembranosus.

While the functional relationship between the degree of
shortening and either objective (e.g. shear force) and/or
sensory panel assessments of tenderness/toughness is widely
acknowledged (see review by Tornberg 1996), there are
exceptions to this dogma (Smulders et al. 1990; Shackelford
et al. 1994). Smulders et al. (1990) demonstrated variation in
tenderness/toughness that was independent of sarcomere length.
In their study, the relationship between sarcomere length and
panel tenderness scores of unaged, m. longissimus steaks was
almost non-existent for those samples where faster rates of post-
mortem glycolysis (i.e. pH <6.3 at 3 h post-mortem) had occurred.
The explanation to this hitherto incongruent outcome can be
attributed, in part, to the contribution of proteolysis.

Attenuation of rigor

The attenuation of rigor is also known as the tenderisation
phase, where the rigor-induced increase in isometric tension
is reduced to some degree post-mortem through the actions of
enzymatic processes. These cause a weakening of the myofibrillar
matrix through the degradation of key structural proteins, which
in turn, manifests as an improvement in tenderness. These
degradative changes are exploited for commercial benefit via
the practice known as ageing, which involves storing meat at low
temperatures for periods of several days to weeks.

In his review of the proteolytic systems involved in post-
mortem muscle tenderisation, Ouali (1992) identified three main
endogenous protease systems: (i) calcium-dependent calpain
system (U-calpain, m-calpain and their inhibitor calpastatin);
(i1) lysosomal cathepsins (cathepsin B, D, H and L); and (iii)
ubiquitin-proteasome complex (also known as the multicatalytic
proteinase). Debate has ensued regarding the relative
contributions of these proteinases, particularly the most
extensively studied calpains and cathepsins (Koohmaraie
1992, 1996; Roncales et al. 1995; Ouali et al. 20006).
However, based on the in vitro data, [-calpain appears to be
responsible for the majority of the post-mortem tenderisation
(Roncales et al. 1995; Koohmaraie 1996; Dransfield 1999;
Koohmaraie and Geesink 20006).

There has been debate over when proteolysis commences
post-mortem. Evidence shows that it begins quite early after
stunning (Troy et al. 1986; Koohmaraie et al. 1987). Whether
the initial proteolytic activity results in significant structural
weakening is a matter of conjecture (Dransfield et al. 1992).
Dransfield et al. (1992) argued that, under normal rigor
conditions,  calpain-mediated  tenderisation = commences
approximately midway through the development of rigor (pH
6.1-6.3).

The prevailing conditions of pH and temperature post-mortem
also govern the rate of calpain activation and inactivation
(Dransfield 1994; Simmons et al. 1996). In rapidly glycolysing
muscle, the rate of proteolytic activity as measured directly
(Simmons ef al. 1996) and indirectly via electrophoresis
(O’Halloran et al. 1997a, 1997b) was accelerated. Dransfield
(1994) predicted that calpain activities would be six times
greater following rapid glycolysis (i.e. pH 5.5 at 2 h post-
mortem) than at more standard rates of glycolysis (i.e. pH 5.5
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at 20 h) under standard cooling conditions. Part of this can be
explained by the decrease in inhibitory activity of calpastatin
during the early post-mortem period when the pH falls below
6.4 (Dransfield 1995; O’Halloran et al. 1997h). Consequently,
during rapid glycolysis, the majority of the tenderisation can
occur within the first 24 h post-mortem, with very little response
to further ageing (Dransfield 1995).

Animportant caveat here with respect to proteolytic activation
during rapid glycolysis is that this only applies when the
temperature decline is commensurate with rate of pH decline
(Dransfield 1994). This unfortunately is not easily achieved under
standard carcass-chilling regimes in commercial abattoirs.
Consequently, the corollary of rapid glycolysis is, quite often,
higher rigor temperatures. This is undesirable on two fronts.
First, it can increase the risk of heat shortening, and second,
and perhaps more importantly, it accelerates the inactivation
of calpains through autolysis (Dransfield 1994, 1995). In some
cases, the rate of inactivation can exceed the rate of calpain
activation, thus leading to minimal tenderisation (Dransfield
1995). Consequently, the combination of high temperature and
rapid glycolysis can facilitate increases in toughness with very
limited ageing potential.

The study by Simmons et al. (1996) nicely illustrates the
autolytic effect of temperature on proteolytic activity and the
impact on ageing response. They showed that the different pre-
rigor temperatures (15, 25 and 35°C) resulted in a 16%, 49%
and 74% reduction in calpain activity, respectively, at rigor (i.e.
pH 5.5). Higher rigor temperatures also resulted in increased
shortening as measured by sarcomere length. Despite this, meat
held at 35°C was more tender at rigor than meat held at either 15
or 25°C, indicating that rapid proteolysis helped to negate some
of'the loss in tenderness through increased shortening. However,
any advantage was quickly lost with further ageing, as the
reduction in shear force was substantially greater at lower
rigor temperatures (45-50%) than at 35°C (20%). This
reinforces the assertion of Dransfield (1994, 1995) that high
rigor temperatures limit the ageing capacity of meat. Further
evidence of this is provided in the more recent studies of
Devine et al. (1999) and Devine et al. (2002).

Based on the above evidence, the fast declines in both
glycolysis and temperature appear to be optimal with respect
to minimising the degree of shortening and maximising the
rate and extent of proteolytic tenderisation.

Glycolysis

Glycolysis in muscle is largely responsible for rephosphorylation
of ADP during a bout of exercise when oxygen becomes limiting
and cannot support mitochondrial respiration, or during post-
mortem metabolism. Glycolysis or ‘sweet (sugar) dissolution
(loosening)’ is a series of 10 biochemical reactions responsible
for metabolising a six-carbon molecule into two three-carbon
molecules and, in the process, generates ATP. Often, glycolysis
is separated into two phases. The first phase, or preparatory
phase, involves five reactions that metabolise the six carbon
hexoses into one common product, glyceraldehyde 3-
phosphate. The second set of five reactions yield ATP, yet
retaining the three-carbon molecules, albeit in the form of
pyruvate.
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The first rate-limiting enzyme of glycolysis is
phosphofructokinase (PFK), which irreversibly catalyses the
conversion of fructose 6-phosphate to fructose 1,6-

bisphosphate. PFK is often cited as the most profound control
point of glycolysis in living tissue, and it may facilitate
termination of muscle metabolism post-mortem. To that end,
PFK responds positively to AMP, fructose 1,6-phosphate, ADP,
phosphate and K*. Conversely, the action of PFK is dramatically
attenuated by the presence of ATP and citrate. The latter is a
product of fatty acid oxidation. Using his classic reconstituted
glycolytic system, Scopes (1974) showed that even at a pH as
low as 5.35, PFK remained strongly active, arguing that PFK,
although possibly modulating the rate of pH decline, clearly
was not responsible for dictating the cessation of glycolysis.
Schwigele and Honikel (1988) further supported this notion by
showing that PFK activity changed little in pig muscle, ranging
in pH from 5.3 to 6.8 at 45 min post-mortem. Even so, there is
doubt about whether these enzyme assays were conducted at
a neutral pH or at a pH reflecting the environment from which
they were extracted. Regardless, PFK remains as one of the
most likely candidates in modulating post-mortem metabolism.

Pyruvate kinase (PK), one of the more distal enzymes in the
glycolytic pathway, irreversibly catalyses the conversion of
phosphoenolpyruvate to pyruvate. It exists in at least three
different isoforms and is negatively controlled by ATP, and by
acetyl-CoA and fatty acids, both substrates of the TCA cycle.
Schwigele et al. (1996) reported that the activity of PK from
pale, soft and exudative (PSE) meat was greater at lower pH
values. Using isoelectric focusing they proposed that an
additional isoform might exist in pigs, making the muscle
more prone to a quality aberration. However, such an isoform
has not been identified and may simply be an artefact of fast-
glycolysing muscle.

Creation of lactate is often considered part of glycolysis.
However, lactate is the ultimate product of anaerobic
metabolism and may be one of the most misunderstood
biochemical events in meat science and among the meat
animal community (Scheffler and Gerrard 2007; Scheffler
et al. 2011), as well as in exercise physiology (reviewed by
Robergs et al. 2004). As outlined previously, the general
perception of post-mortem metabolism is that glucose is
converted to ‘lactic acid’ and the latter causes muscle pH to
decline. However, it is important to understand that lactate
formation during anaerobic metabolism serves two purposes.
First, this reaction regenerates NAD+, a co-enzyme required
by a more proximal glycolytic reaction using the enzyme
glyceraldehyde phosphate dehydrogenase (Lehninger et al.
1993). If NADH is not oxidised, glycolysis stops prematurely,
or proceeds at an extremely reduced rate. Second, during the
reduction of pyruvate to lactate, one hydrogen from NADH and
one hydrogen from solution are removed from the cytoplasm. If
glycolysis were to proceed without the formation of lactate, the
concentration of H" would increase more rapidly, overwhelming
the buffering capacity of the muscle (i.e. P;, amino acids and
various proteins) and decreasing cytosolic pH quicker, thereby
compromising the power surrounding contraction, which
ultimately results in fatigue (Fitts 1994; Westerblad et al.
2002). Lactate formation essentially prolongs glycolysis by
retarding the increase in free hydrogen accumulation in the

D. M. Ferguson and D. E. Gerrard

cytosol (Robergs 2001). In support, the pK,, or the negative
log of the dissociation constant of lactate, is ~3.86; therefore,
lactic acid is always dissociated and exists as a salt rather than an
acid in the muscle tissue. So atany given time during post-mortem
metabolism, most of lactate exists in an unprotonated state.
Furthermore, recall that the equilibrium constant favours the
development of lactate, meaning that any time pyruvate entry
into the mitochondria is slightly slowed, lactate is preferentially
and immediately formed. These data show the utility of lactate
formation for extending anaerobic muscle metabolism and
suggest that lactate accumulation is a good indicator of the
extent and rate of glycolysis; however, they identify a major
pitfall of using lactate directly to predict muscle pH decline.

Some of the most informative studies conducted in the area
were reported by Robert K. Scopes while at the Meat Research
Institute in Bristol. In particular, he showed that glycolysis was
regulated by ATPase activity. Either directly or indirectly, the
activities of the aforementioned enzymes are virtually controlled
by cellular levels of ADP. When ATP is plentiful, minimal
glycolysis is necessary. As such, glycolysis occurring post-
mortem is greatly impacted by the disappearance of ATP
(Scopes 1974).

Of particular significance to muscle cells are: myofibrillar
ATPase (mATPase), sarcoplasmic reticulum Ca*’-ATPase
(SR-ATPase), plasmalemma Na',K'-ATPase, plasmalemma
Ca®"-ATPase, and mitochondrial ATPase. Activites of
mATPase, SR-ATPase and mitochondrial ATPase are similar
immediately post-mortem (Greaser et al. 1969). However, given
the abundance of mATPase in skeletal muscle, ATP consumption
by the myofibrillar component likely drives post-mortem
metabolism. One of the best examples of a rapid glycolysis in
muscle post-mortem is that associated with halothane-positive
pigs, which often results in PSE pork. In this regard and given the
above discussion, the mATPase activity of muscle in PSE-
generating pork muscle should be quite high. Contrary to this
thesis, however, Greaser et al. (1969) reported mATPase activity
is actually greater in myofibrils from normal than halothane-
positive pigs. Honikel and Kim (1986) corroborated this finding
by showing that sarcomeres of isolated myofibrils from PSE pork
were unable to shorten, whereas those of normal pork remained
largely functional. These data argue strongly against mATPase
driving glycolysis in muscle from halothane-positives pigs.
Alternatively, it is well known that the functional difference
between halothane-positive and normal pigs resides largely in
the ability of the muscles to maintain sarcoplasmic calcium
levels. Specifically, halothane-positive pigs possess a mutation
in the ryanodine receptor protein, which in muscle functions as a
calcium release channel embedded in the sarcoplasmic reticulum
(Mickelson et al. 1989). Although difficult to measure, calcium
levels in muscle of mutated animals are indeed elevated over
those in muscle possessing anormal calcium channel (Lopez et al.
1986; laizzo et al. 1988). As a result, ATP consumption by the
SR-ATPase directly would remain quite high in the muscle of
mutated animals. In response to this aggravated calcium
homeostasis, mATPase would be elevated due to rising levels
of cellular calcium, and this loss of ATP, or increase in ADP,
would increase flux through glycolysis. In fact, Strasburg and
Chiang (2009) and others (Allison ef al. 2003) have argued
that the bulk of variation observed in turkey and pork quality,
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respectively, is manifested in polymorphisms within the
ryanodine receptor gene, which is intuitive given the size and
complexity of the tetrameric protein and associated genes (Rossi
and Sorrentino 2002). Regardless of the exact ATPase
responsible, there is little question that glycolysis responds to
declining ATP levels and, by design, must have access to ADP
to rephosphorylate.

Continuing the line of thought that energy status (ATP)
modulates glycolytic flux, existence of cellular AMP reflects a
compromised energy status and, therefore, is a logical activator
of glycolysis (Lehninger et al. 1993). Although AMP can
directly alter enzyme activity through allosteric means, the
primary sensor of cellular AMP in muscle cells is AMP kinase
(AMPK), especially in living tissue. Under conditions where
the energy expenditure is pronounced, AMP binds to AMPK
and becomes activated through various phosphorylation
events involving upstream kinases. This, in turn, increases
energy-producing biochemical pathways and down-regulates
those pathways consuming energy (Winder and Thomson
2007), such as glucose uptake, glycolysis and oxidative
phosphorylation, and fatty acid and glycogen syntheses
pathways, respectively. Given the profound ability that AMPK
activation has on energy metabolism in living muscle, some
authors have logically argued that AMPK activation may drive
post-mortem glycolysis. Shen and Du (2005) first showed that
muscle of mice lacking a functional AMPK failed to experience
a normal pH decline post-mortem compared with wild-type
mice. They further showed that muscle of mice treated with 5-
amino-1-B-D-ribofuranosyl-imidazole-4-carboxamide (AICAR),
a chemical that activates AMPK, had a greater reduction in pH
than normal mice. Subsequently, they reported an association
between muscle with increased AMPK activation and muscle
ultimately developing PSE pork (Shen et al. 2006a). Making the
connection to animal handling, Shen et al. (2006)) then reported
that pigs transported greater distances had greater AMPK
activity and poorer meat-pork quality characteristics. Although
changes in AMPK activation before death were not ruled out as
a driver of post-mortem metabolism, Shen et al. (2008)
culminated their efforts to show AMPK was a driver of meat
quality development by showing that administration of
compound C, an AMPK inhibitor, to animals immediately
before exsanguination was capable of severely retarding
muscle pH decline. These data strongly argue that activated
AMPK, possibly through modulation of phosphofructokinase
1 and 2 activities—the latter catalyses the production of
fructose 2,6-bisphosphate and increases PFK1 activity—may
impact post-mortem metabolism and subsequent meat quality
development. Others supported this notion by showing that
global phosphorylation patterns, possibly through AMPK-
mediated events or otherwise, occur post-mortem and may
alter the transformation of muscle to meat (Huang et al. 2011;
Lametsch et al. 2011).

Alternatively and as pointed out above, it is possible that
energy charge of the muscle before slaughter remains the culprit
of adverse meat quality development. Although hardly a valid
argument, this is more in line with theories initially proposed
to underlie handling-related quality issues (Warriss 1990). In
the case of the AMPK-mediated aberrations in meat-quality
development, a gain-in-function mutation in the gamma 3
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subunit has been identified in Rendement Napole pigs (RN)
(Milan et al. 2000). These pigs possess muscle chronically
attempting to generate extra energy (ATP) because the AMP
binding portion of the enzyme is altered in such a manner that
it ‘thinks’ it is bound to AMP. Even though, we (Copenhafer
et al. 2006) and others (Monin and Sellier 1985; Fernandez
et al. 1992; Milan et al. 2000) have shown that RN pigs
possess higher glycogen levels than their normal counterparts,
these pigs have greater PCr immediately post-stunning
(Copenhafer et al. 2006). As discussed, altering the phosphagen
system has clear implications on glycolysis, and this, with other
as-yet unknown energy substrates, may alter the beginning
energy status of muscle at the point of death and thereby alter
post-mortem metabolism rather than the fact they have greater
activated AMPK at slaughter.

Given that RN pigs produce ‘acid meat’ and have a lower
ultimate pH (Monin and Sellier 1985), presumably from
augmented, carbohydrate-based metabolism (Przybylski et al.
1994), it is odd that muscle cross-sections stain more intensely
for oxidative enzymes (Lebret et al. 1999). This raises the
question of how mitochondria contribute to post-mortem
metabolism, an issue that has often been ignored in meat
science. Energy is clearly stored in the electrochemical
gradient that exists across the inner mitochondria membrane,
and is captured through the rephosphorylation of ADP by FF-
ATP synthase in the presence of oxygen. Curiously, however,
this synthase reverses itself and functions as an ATPase when
oxygen is limiting, in an ill-fated attempt to retain the proton
motive forces within the mitochondrion (Scott and Nicholls
1980). The additional consumption of ATP in this manner has
been proposed as ‘mitochondrial treason’ and may change the
way post-mortem is classically understood, especially in muscle
considered more oxidative in nature or the inherent differences
between muscles varying in fibre-type composition (Hudson
2012).

P&so and Puolanne (2005) suggested that transient oxidative
metabolism may only account for a small (1-5%) fraction of
ATP produced post-mortem by oxygen bound to residual
haemoglobin in muscle. This follows on the evidence from
Hochachka (2003), who showed that myoglobin is capable of
buffering oxygen levels in the muscle during non-steady-state
levels of exercise. Indeed, some level of oxidative metabolism can
occur during periods of hypoxia or reduced oxygen saturation
levels (Marcinek et al. 2003). Therefore, unless oxygen saturation
of myoglobin abruptly goes to zero at exsanguination,
mitochondrial function may occur during the earliest periods
of post-mortem metabolism, perhaps buffering energy depletion
and modifying subsequently the transformation of muscle to
meat. Alternatively, mitochondria may exacerbate the process
by augmenting ATP consumption. Regardless, additional work
in this area is needed to understand the full impact of the
mitochondria and the cessation of oxidative metabolism on
post-mortem metabolism and meat quality development.

Glycogenolysis
Glycogen structure

The structure and metabolism of glycogen were recently
reviewed by Roach et al. (2012). Glycogen exists as a
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branched-chain polymer of glucose. The molecule is believed to
comprise ~10 000 glycosyl units linked by o.-1,4 (93%) and a-1,6
(7%) glycosidic linkages (Connett and Sahlin 1996). The basic
structure of glycogen has been studied extensively, and the
Whelan model (Gunja-Smith et al. 1970) is generally accepted
(Goldsmith et al. 1982; Melendez-Hevia et al. 1993). The
biogenesis of glycogen commences with a self-glycosylating
protein primer glycogenin (hexosyltransferase) (see reviews by
Alonso et al. 1995; Roach et al. 2012). Based on the Whelan
model (Gunja-Smith et al. 1970), the different glycosidic linkages
give rise to two different types of branched chains: B-chains,
which are branched, and the non-branched A-chains. The degree
of branching occurs by a uniform factor of two. Therefore, every
B-chain has two branches on it. The molecule is arranged in
concentric tiers where the number of chains in any single tier is
double that of the previous tier. The mathematical modelling
studies of Melendez-Hevia et al. (1993) indicate that the
structure of glycogen is functionally optimal as it maximises
the storage of glucose within a small volume and the number
glycosyl units that are readily phosphorylated.

Histochemical studies (Fridén et al. 1989) reveal that glycogen
particles are distributed over five subcellular locations: the
subsarcolemmal, intermyofibrillar, para-Z-disk, N, line
(located in the I band), and H zone spaces. Those authors
proposed a functional association with these storage depots
and were able to demonstrate that the stores near the Z disks
and N, lines were preferentially depleted during exercise. Fridén
et al. (1989) also observed the existence of different-sized
populations of glycogen particles. Further investigation has
revealed that glycogen is present in two discrete forms, which
are identifiable based on their solubility in perchloric acid
(PCA) and their size (Jansson 1981; Alonso et al. 1995). The
smaller (up to 400 kDa) form, known as proglycogen (PG), is
not soluble in PCA because of its higher protein/carbohydrate
ratio. It is estimated that 10% of proglycogen is protein in the
form of glycogenin. By contrast, the more ‘mature’
macroglycogen (MG), by virtue of its size (~10° kDa) and
therefore considerably smaller protein/carbohydrate ratio, is
soluble in PCA.

The relative proportions of PG and MG vary depending on
the total glycogen content (Adamo and Graham 1998; Derave
et al. 2000; Brojer et al. 2002). However, the methodology used
to determine the concentrations of PG and MG has been
challenged, as it may lead to overestimation of the PG fraction
(James et al. 2008). Notwithstanding this, the proportion of
total glycogen as MG is recorded as 40% in horses (Brojer
et al. 2002), 24-25% (estimated) in pigs (Young et al. 2009),
and 46-57% in sheep (Ferguson et al. 2008).

The physiological roles of these two forms and indeed their
metabolic regulation are not fully understood (Alonso et al.
1995; Graham et al. 2001). Contention remains about whether
they are discrete entities or whether PG merely represents a
continuum of smaller glycogen particles (Alonso et al. 1995;
Roach et al. 2012). There is evidence that catabolism of PG
and MG may be differentially regulated (Huang et al. 1997; Asp
et al. 1999; Derave et al. 2000; Shearer ef al. 2001; Graham
et al. 2001). In human studies, the results strongly indicate that
PG is preferentially depleted over MG during the initial stages
of physical activity in muscles with normal to high glycogen
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concentrations (Graham ez al. 2001; Shearer et al. 2001). Atlower
glycogen concentrations, the two pools contribute equally to
glycogenolysis (Shearer et al. 2001). In pigs, the results have
been equivocal (Rosenvold et al. 2003, 2010).

Glycogen concentration in ruminant muscle

The muscle glycogen concentration at rest in normal healthy
sheep and cattle ranges from 75 to 120 pumol/g (Monin 1981;
Lambert et al. 1998; Pethick et al. 1999; Immonen et al. 2000;
Gardner 2001; Ferguson et al. 2007). Glycogen levels will vary
between muscles, a reflection of their metabolic profile,
specifically, fibre type. For example, Monin (1981) reported
that ovine muscles with a high proportion of type Ila fibres
had higher glycogen concentrations (90-105 pmol/g) than
muscles predominantly comprising either type I or IIb fibres
(75-80 umol/g). However, the differences were not as well
defined between bovine muscles. Nevertheless, Monin (1981)
did observe that glycogen concentration increased in muscles
with a higher percentage of type II fibres, which was corroborated
by Lacourt and Tarrant (1985). Furthermore, studies in cattle
(Pethick er al. 1999; Gardner 2001) suggest, based on the
histochemical classification of bovine muscles (Totland and
Kryvi 1991), that muscles high in Ila fibres (fast oxidative/
glycolytic) have higher glycogen contents than predominantly
IIb muscles (fast glycolytic).

Glycogen concentration is, of course, central to the extent of
post-mortem pH decline. In healthy animals not unduly stressed
before slaughter, this should not be limiting factor, as the
concentration is generally higher that that required to attain
normal ultimate pH (5.5-5.6). From studies investigating the
relationship between pre-slaughter glycogen levels or glycolytic
potential — defined by Monin and Sellier (1985) as [lactate] + 2
([glycogen] + [glucose-6-phosphate] + [glucose]) — and ultimate
pH, it is evident that ultimate pH is only affected once the pre-
slaughter glycogen level falls below the critical threshold of
45-55 pumol/g (Howard 1963; Monin 1981; Warriss 1990;
Wulf et al. 2002).

Regulation of glycogenolysis

Although the initial substrate ‘powering’ glycolysis is often
thought to be glucose, glycogenolysis, or the breakdown of
glycogen is actually the sequential liberation of glucose 1-
phosphate residues from glycogen by the enzyme glycogen
phosphorylase (GP) (Lehninger et al. 1993). This reaction is
one of the rate-limiting steps of anaerobic metabolism post-
mortem as oxygen is depleted from the tissues. In living
tissues, glucose originates in the blood and is immediately
phosphorylated to glucose 6-phosphate (G6P) by hexokinase.
Once phosphorylated, it is shuttled to storage as part of a larger
glycogen molecule, or it enters glycolysis. Free glucose arising
from glycogenolysis is not likely to be phosphorylated post-
mortem, because G6P is a potent inhibitor of hexokinase. The
bottom line is that entry of a glucose molecule into glycolysis
requires energy (1 ATP), whereas glycogen residues are already
in a form (G6P) to begin metabolism. Although seemingly
trivial in nature, it is critical to understanding the origin and
significance of various protons emanating from glycolysis and
ATP hydrolysis post-mortem. This fact alone causes some
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disparity in how energy metabolism in exercising muscle
differs from that occurring in post-mortem muscle. After all,
generation of free hydrogens is responsible for changes in muscle
pH post-mortem, and whether glycolysis begins with glucose
or G6P can dramatically affect calculations defining the source
net hydrogen ion production (Hamm 1977; Robergs 2001).
Regardless, once a glucose residue is liberated from glycogen,
it is rapidly converted to G6P by an enzyme that repositions the
phosphate on the sugar.

Two enzymes operate in parallel during glycogenolysis. As
discussed, GP is responsible for the transfer of a glycosyl unit
to inorganic phosphate to form glucose-1-phosphate (Connett
and Sahlin 1996). It targets the o-1,4 glycosidic linkages on the
A-chain branches only, and continues until it reaches a point
where four residues remain before the o-1,6 branch point. The
bi-functional enzyme amylo-1,6-glucosidase, or debranching
enzyme as it is commonly known, is then required to catalyse
two successive reactions that result in the transfer of a block of
three residues to a nearby non-reducing end (i.e. o-1,4 chain)
and the release of the final residue as free glucose (Lehninger
et al. 1993). GP is primarily responsible during the initial phase
of glycogenolysis, since 40-50% of the glycosyl units exist as
o-1,4 linkages in the outer branches (Connett and Sahlin 1996).
Consequently, debranching enzyme is not required until the
limit dextrin has been reached on each A-chain.

Glycogen phosphorylase exists as two inter-convertible forms
and it is regulated by both substrate and allosteric control
mechanisms. Consequently, it is therefore recognised as a key
rate-limiting enzyme for glycogenolysis (Stanley and Connett
1991; Connett and Sahlin 1996). A cyclic process of covalent
modification regulates the inter-conversion between the active
form of GP (GPa) and the less active form (GPb) (Meinke and
Edstrom 1991). While GPb is less active, it is still allosterically
capable of activation by the presence of AMP in times of
great energy demand. Conversion to GPa is governed by
phosphorylase kinase, which in turn is regulated by calcium
(Ca®', pH, and by PB-adrenergic stimulation via cyclic AMP
(cAMP); Hargreaves and Richter 1988; Meinke and Edstrom
1991; Connett and Sahlin 1996). The biochemical cascade of
events initiated by B-adrenergic stimulation commences with the
epinephrine-mediated increase in cAMP, which results in
activation of cAMP-dependent protein kinase. This enzyme
phosphorylates phosphorylase kinase, which catalyses the
conversion of GPb to GPa. The activation of phosphorylase
kinase by cAMP and Ca®' therefore couples activation of
glycogenolysis to the adrenergic stress response (i.e. fight or
flight response) and muscle contraction, respectively. GP is
also allosterically regulated where AMP and IMP are potent
activators, while ADP, ATP and glucose-6-phosphate all
inhibit GP activity (Connett and Sahlin 1996).

The phosphorylation of GP (i.e. conversion to active form)
does not automatically signify higher rates of glycogenolysis.
Chasiotis (1988) showed that following epinephrine infusion,
the percentage of GP in its active form increased from 22%
to 80%. However, despite this, there was minimal effect on
glycogenolytic rate. Chasiotis (1988) attributed the low
glycogenolytic rate to substrate inhibition of GP by the
normally low inorganic phosphate levels in resting muscle.
This is overcome at the commencement of muscle contraction

Animal Production Science 471

where the phosphate concentration rises rapidly through ATP
hydrolysis and rephosphorylation of PCr.

In addition to phosphate, evidence from human and rodent
studies suggests that glycogen concentration may also regulate
GP activity and therefore glycogenolysis (Richter and Galbo
1986; Hespel and Richter 1990, 1992; Hargreaves et al. 1995,
1997; Vandenberghe et al. 1999; Shearer et al. 2001).
Paradoxically, the reported K, of GP for glycogen is reported
as 1-2 mm (Newsholme and Leech 1983). Therefore, the enzyme
should be fully saturated with its substrate given that the normal
resting concentrations of glycogen in mammalian muscle ranges
from 80 to 100 mm (Connett and Sahlin 1996). However, the
relevance of the in vitro K,,, estimates to in vivo conditions has
been questioned (Hargreaves and Richter 1988; Connett and
Sahlin 1996).

Further contention about whether glycogen concentration
regulates glycogenolysis has been fuelled by equivocal results.
Whereas Richter and Galbo (1986), Hespel and Richter (1990,
1992), Hargreaves et al. (1995), Hargreaves et al. (1997),
Vandenberghe et al. (1999) and Shearer et al. (2001) all found
a positive effect, others (Ren ef al. 1990; Spriet et al. 1990;
Bangsbo et al. 1992) could not establish an effect. Some of the
disparity appears linked to methodological issues, in particular,
the intensity of the exercise and the variation in glycogen
concentration. According to Vandenberghe er al. (1999), a
positive association was more apparent during prolonged
exercise than short-term intense activity, although this has not
always been the case (e.g. Shearer et al. 2001).

Of significance, however, in the studies by Vandenberghe
et al. (1999) and Shearer ef al. (2001) was the finding that the
active form of GP was elevated in the presence of high glycogen
concentrations. This agrees with earlier reports for rodent
muscle by Richter and Galbo (1986) and Hespel and Richter
(1992). If the reported K,,, for GP and glycogen is erroneous, the
coupling between GP transformation and glycogen concentration
could therefore account for the higher glycogenolytic rates.
However, this begs the question: what is the mechanistic basis
for the coupling in the first instance? Shearer et al. (2001)
hypothesised that the substrate-mediated increase in the
transformation of GP might be linked to the association and
dissociation of GP and other relevant enzymes with the
glycogen particle. It is generally accepted that the glycolytic
enzymes exist as bound complexes either within the cytosol or
with cellular structures (see reviews by Brooks and Storey 1991;
Roach et al. 2012). Furthermore, the state of these complexes is
not fixed, and this is believed to be implicit in the cellular
regulation of glycolytic flux. Using this as a basis, Shearer
et al. (2001) put forward the view that the increased
glycogenolytic rate may be because more GP is bound with
glycogen when glycogen levels are high.

The question of whether the association between glycogen
concentration and glycogenolysis was relevant to post-mortem
biochemistry in ovine muscle was examined by Daly et al.
(2006) and Ferguson et al. (2008). Only Daly et al. (2006)
found glycogen concentration to influence the magnitude of
the pH response to post-slaughter electrical stimulation.
However, there was agreement between the studies regarding
the positive association between glycogen concentration and
rate of pH decline adjusted to a constant temperature of 38°C
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(refer Bendall 1978). A significant aspect of both studies was
that the muscle glycogen concentration in both studies was
relatively low (40-55 pwmol/g). Therefore, this does not align
with the view by Shearer et al. (2001) that accelerated
glycogenolysis is evident primarily at higher glycogen
concentrations. This again raises an issue that is paramount to
the study of post-mortem metabolism— ‘what is the energy status
of the tissue prior to slaughter?”—as altered metabolism post-
mortem is profoundly a function of those physiological changes
that occur in the tissues preceding slaughter.

Clearly, further examination of the association between pre-
slaughter muscle glycogen concentration and post-mortem
glycolysis is warranted. However, the data and hypotheses of
(Copenhafer et al. 2006; Scheffler and Gerrard 2007; Park et al.
2009; Scheffler et al. 2011), including earlier observations of
Sellier and Monin (1994), strongly suggest that factors other
than glycogen concentration underpin the variation in the rate
and extent of post-mortem pH decline.

Factors influencing post-mortem glycolytic rate
in ruminant muscle

As stated earlier, the time-dependent changes in pH are typically
used to estimate glycolytic rate in post-mortem muscle. In
general, depending on the rate of chilling, normal ultimate pH
(i.e. 5.5-5.6) in ruminant muscle is attained within 24-48 h
(Tarrant and Mothersill 1977; Lister et al. 1981). Glycolytic
rate can vary substantially between contemporary animals
(O’Halloran et al. 1997a; Butchers et al. 1998; McGeehin
et al. 2001) and between muscles within the carcass (Tarrant
and Mothersill 1977). The intrinsic and extrinsic factors inherent
to this variance are discussed below. It is worth highlighting
that, in general, this area has not received critical attention,
particularly in ruminants. The opposite is true with respect to
the knowledge pertaining to pig muscle, largely because of their
inherently faster glycolytic rates and because this can be further
accelerated in certain genotypes (e.g. differences in halothane
gene expression).

Animal and ante-mortem factors
Muscle fibre type

Muscles vary with respect to their fibre-type composition.
These variations in fibre type are reflected by differences
between muscles in the physical appearance, mechanical
properties and metabolic rates. Not surprisingly, divergent
patterns in the post-mortem rates of glycolysis are also
evident. Muscles with a high proportion of oxidative type I
fibres display faster rates of pH decline than predominantly
type IIb fibre muscles (Devine et al. 1984; Aalhus and Price
1991). This seems incongruous, as muscles with a higher
proportion of type IIb fibres, and therefore higher activities of
glycolytic enzymes (Monin 1981; Talmant ef al. 1986), might be
expected to have faster rates of pH decline. Aalhus and Price
(1991) postulated that the increased buffering capacity in type
IIb muscles might explain the apparent anomaly. The data of
Talmant et al. (1986) certainly support the fact that slow-twitch,
type I muscles have a lower buffering capacity than type II
muscles. In their study based on 18 bovine muscles, the
buffering capacity ranged from 40 to 55 umol lactate/g.pH unit.
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Importantly, glycogen concentration varies between the
fibre types, and this, in turn, can influence the extent of post-
mortem glycolysis and therefore ultimate pH. Muscles with
predominantly type I fibres have lower glycogen concentrations
than those with type II or fast twitch muscles (Monin 1981;
Talmant et al. 1986).

Breed/genotype differences

The effects of genotype and environmental factors on the
variance in meat quality traits were recently reviewed by
Warner et al. (2010). Genetic differences are certainly evident
for important traits such as tenderness in cattle (Burrow et al.
2001; Johnston et al. 2003) and sheep (Mortimer et al. 2009;
Warner et al. 2010). However, it was not clear whether this
could be accounted for by genetic differences in glycolytic rate,
because the trait was rarely measured.

Studies contrasting Bos taurus and Bos indicus beef quality
(Wheeler et al. 1990a, 1990b; Shackelford et al. 1991) suggest
that the rate of pH decline may be slightly slower in Bos indicus
muscle. However, it is not clear whether there were differences
in the rates of temperature decline, which may have confounded
the intrinsic rates of pH decline. This is an important point, as
breed differences in maturity pattern will give rise to variations in
carcass weight and fatness and, therefore, to variability in carcass
cooling rates. Consequently, this may influence the rate of
glycolysis, so care needs to be exercised when interpreting
data on pH decline made on cooling carcasses. However, it is
possible to correct mathematically for the temperature-sensitive
variation in pH decline (Bendall 1978), and this will facilitate
more meaningful comparisons of pH decline when measurements
are made on cooling carcasses.

In a lamb study contrasting five genotypes based on Poll
Dorset, Border Leicester and Merino breeds, Hopkins et al.
(2007) did not observe differences in post-mortem glycolytic
rate (m. longissimus).

With respect to genotype, two genes associated with muscle
hyperplasia in cattle (myostatin gene) and muscle hypertrophy in
sheep (callipyge gene) may also indirectly influence post-mortem
glycolytic rate. Concomitant with the increase in muscle mass,
the proportions of type IIb fibres and type Ila fibres increased
and decreased, respectively, in double-muscled cattle and
callipyge lambs (Holmes and Ashmore 1972, Carpenter et al.
1996; Greenwood and Dunshea 2009). Based on the observations
of Devine et al. (1984) and Aalhus and Price (1991), slower
rates of pH decline might be expected in these muscles. However,
in practice, this may be offset by the increased muscle mass,
which will retard muscle temperature decline.

Sex

Due to a lack of comparative studies, little can be concluded
about differences in glycolytic rate between the sexes. In one
study in lambs, McGeehin et al. (2001) observed faster rates in
females than males. Differences in maturity and therefore fat
cover may have been a contributing factor.

Nutrition and production system

Nutritionally mediated differences in carcass weight and
fatness will influence cooling rate and, potentially, glycolytic
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rate (Jacob and Hopkins 2014). Grain-fed cattle show elevated
core body temperature relative to grass-fed cattle (Jacob et al.
2014), and this can contribute to accelerated glycolytic rate
post-slaughter. Furthermore, cattle on grain-based diets show a
lower pH early post-slaughter and a higher rigor temperature
than grass-fed cattle, even after adjustment for carcass weight
and fatness (Warner et al. 2014). In another example, pronounced
differences in glycogen concentration can be achieved through
varying either the level of feeding or the energy density of the
diet (Pethick er al. 1999). As discussed above, glycogen
concentration has been shown to influence glycogenolytic rate.

The daily level of physical activity, which can vary between
extensive and intensive production systems, may also indirectly
affect post-mortem glycolysis, once again through changes in the
fibre-type profile. Vestergaard et al. (2000) investigated the
effect of finishing system on muscle fibre characteristics in
young bulls. In contrast to extensively reared bulls (loose
housing plus pasture), the bulls that were intensively housed
(tethered in stalls) had lower proportions of type I and Ila fibres
and a higher proportion of type IIb fibres. A similar trend, but
only for type I fibres, was observed by Moody et al. (1980) in
their study comparing pasture and feedlot lambs. Vestergaard
et al. (2000) attributed the transition in muscle fibre profile to
differences in activity level. This assertion is supported by the
general conclusion from human and animal studies that, in
response to endurance exercise, there is an increase in muscle
oxidative capacity, which is manifest by an increase in type I
and Ila fibres (Aalhus and Price 1991; Henriksson 1992; Essen-
Gustavsson 1996). The exercise study in lambs by Aalhus and
Price (1991) is relevant in the context of this review, as the post-
mortem pH declines were measured. Despite the increase in the
percentage of type I fibres with exercise, the rate of post-mortem
pH decline was comparable to that measured in non-exercised
controls. Thus, small changes in fibre-type distribution might
not always correlate with altered rates of post-mortem glycolysis.

Pre-slaughter stress

The impact of pre-slaughter stress on muscle glycogen loss
and the deleterious consequences for meat quality have been
extensively studied in meat animals (see reviews by Tarrant 1989;
Lister 1989; Ferguson and Warner 2008). Stress-mediated
reductions in glycogen concentration below the critical
threshold of 45-55 wmol/g (Howard 1963; Monin 1981;
Warriss 1990) will give rise to elevated ultimate pH (pH,).
Meat with pH, >5.9 is typically referred to as DFD. It is
characterised by a darker colour, increased water-holding
capacity and, depending on the pH,, increased toughness
(especially atpH,, 5.9-6.2; see Purchas and Aungsupakorn 1993).

Glycogen loss during pre-slaughter handling of animals is
mediated by the exposure to several stressors such as: fasting,
dehydration, novel/unfamiliar environments, transport, increased
human contact, changes to social structure (i.e. through separation
and mixing), and sudden climatic changes. The magnitude of
glycogen loss will depend on the intensity and duration of the
various stressors and the susceptibility of the animal to stress
(Ferguson et al. 2001). Tarrant (1989), in his review, reported
glycogenolytic rates in cattle to vary between 0.05 umol/g.h
(fasting heifers) and 11 pumol/g.h (mixed penning of bulls). The
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intensity of physical activity is critical, as physical activity per se
may not always result in glycogen depletion. For example,
Lambert ef al. (1998) demonstrated that fast-walking cattle at a
speed of 8 km/h over 5 km did not affect glycogen concentration
in m. longissimus.

Glycogenolysis will also vary between muscles and fibre
types (Tarrant 1989). Muscles along the back and in the hind
limbs appear most prone to glycogen depletion in cattle (Tarrant
and Sherington 1980). The association between exercise
intensity, fibre-type and glycogen mobilisation was shown in
an elegant study by Richter ez al. (1982). During high-frequency
stimulation of perfused rat muscle, the effect of epinephrine
on glycogenolysis was most pronounced in slow-twitch fibres,
whereas there was virtually no effect in the fast-twitch fibres.
By contrast, the opposite was observed when the muscle was
exposed to low-frequency stimulation. Lacourt and Tarrant
(1985) also showed that type I fibres were more responsive to
adrenaline injection in cattle. However, in response to the
combination of physical activity and sympatho-adrenal
activation associated with mixed penning of bulls, glycogen
loss was higher in type II fibres.

Although the association between pre-slaughter stress and
muscle glycogen depletion has been extensively studied in
ruminants, the same cannot be said for the association between
stress pre-slaughter and post-mortem glycolytic rate. This in
contrast to the large body of evidence published for pigs (e.g.
Klont and Lambooy 1995; Warriss et al. 1995; Channon et al.
2000; Steier et al. 2001). The general finding across these
studies was that stress just before stunning resulted in lower
initial muscle pH, higher initial muscle temperature, and a faster
rate of pH decline in the first hour after death but similar rates
beyond that.

The results from several ovine studies where exercise stress
was applied just before slaughter are equivocal. Simmons ef al.
(1997) exercised sheep at 7 km/h for 30 min over a 90-min period
and reported that the rate of pH decline at a constant temperature
(15°C) was slower in the exercised group then the non-exercised
group (0.036 v. 0.073 pH units/h). By contrast, Ferguson (2003)
observed no difference in the rate of pH decline between the
exercised (running at ~8 km/h for 15 min immediately before
slaughter) and non-exercised treatment groups. Pre-slaughter
exercise stress also resulted in significant glycogen depletion
and elevated muscle temperatures at slaughter. In stark contrast,
Bond and Warner (2007) clearly showed that lambs that were
exercised for 10 min pre-slaughter had much faster pH declines,
particularly in the early post-mortem period.

The application of moderate exercise just before slaughter
could be challenged for its relevance to commercial practice.
Clearly, best practice pre-slaughter management aims to
minimise the intensity and duration of stressors that typically
occur during the critical pre-slaughter period. Unfortunately,
compliance with best practice does not always occur, and
anecdotally, animals are subjected to unnecessary bouts of
physical activity before slaughter in some abattoirs. As
evidenced in the above studies, increased activity, depending
on the intensity and duration, leads to changes in muscle
metabolite concentration (e.g. PCr, glycogen), temperature and
pH at slaughter. Furthermore, exercise stress has also been
shown to affect sarcoplasmic reticulum function, specifically
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Ca®" transport, in several animal (Byrd et al. 1989a, 1989b;
Luckin et al. 1991; Favero et al. 1993; Ortenblad et al. 2000)
and human (Gollnick et al. 1991; Booth et al. 1997) studies. In
particular, exercise attenuates Ca”>" uptake and SR Ca>"-ATPase
activity (Byrd et al. 19894, 1989b; Luckin et al. 1991; Gollnick
et al. 1991; Booth ef al. 1997) or SR Ca®" release (Favero ef al.
1993; Westerblad ef al. 1998, Ortenblad et al. 2000).

Kuchenmeister et al. (2001) reported that pre-slaughter stress
in pigs also influenced Ca®" uptake. In sheep, pre-slaughter
exercise elicited an 18% reduction in Ca®" uptake, but this was
not found to be significantly different to the uptake rates in the
non-exercised controls. It was concluded that pre-slaughter
exercise had minimal effect on SR functionality.

Overall, these results suggest that sarcoplasmic reticulum
function might be altered by pre-slaughter stress, and
consequently, may contribute to variations in post-mortem
glycolytic rate. Furthermore, the stress-induced changes in
metabolite concentrations, pH and sarcoplasmic reticulum
function may also be implicit in the reduced glycolytic
response to electrical stimulation (Chrystall et al. 1982;
Warner et al. 2000).

Post-mortem factors
Method of stunning

The process of stunning an animal initiates significant
changes in energy metabolism in muscle. This can be
attributed to neuromuscular activation, and because the plasma
concentrations of adrenaline and noradrenaline concentrations
rise rapidly during stunning (van der Wal et al. 1999). The choice
of stunning method varies between livestock species. In pigs,
carbon dioxide and electric stunning are predominantly used,
whereas captive bolt and electric stunning are both used to stun
cattle and sheep.

In studies comparing different stunning methods, significant
differences in the metabolic response have been reported. In
porcine muscle, electric stunning resulted in a lower initial pH
(Gregory 1995; Bertram et al. 2002) and faster rate of pH decline
(Channon ef al. 2002) compared with carbon dioxide stunning.
Petersen and Blackmore (1982) compared captive bolt and
electric stunning in lambs and found that while the rate of pH
decline was not affected, electric stunning resulted in a lower
initial pH, and this was maintained during rigor.

Another issue relevant to stunning is the degree of involuntary
muscle contraction that occurs in animals following stunning
(i.e. clonic phase). Further reductions in initial pH values at
slaughter can occur depending on the level of muscle activity
(Bendall 1973).

Temperature decline

The temperature dependence of post-mortem muscle
glycolysis has been studied by several workers (Marsh 1954;
Cassens and Newbold 19674, 1967h; Newbold and Scopes 1967,
Bendall 1973; Jeacocke 1977; Tarrant and Mothersill 1977). In
the studies where the muscles were excised soon after death and
incubated at different temperatures (Marsh 1954; Cassens and
Newbold 19674, 1967b), typically over the range of 1 —37°C, the
10°C temperature coefficients (Q;o) increased from 1.25
(5—17°C) to 1.7-1.9 (15—37°C). At temperatures >37°C, the
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temperature coefficients rise dramatically. Marsh (1954)
reported that the Q¢ for the temperature range 37—43°C was
nearly double (6.8) that calculated over the range 33.5—37°C
(3.7).

It is important to recognise that temperature decline within
any given muscle will vary depending on its anatomical location
(i.e. deep v. superficial muscles), the weight and fatness of the
carcass, and the temperature and air-speed conditions during
chilling. Consequently, glycolytic rate varies enormously not
only between muscles, but also within a muscle (Tarrant and
Mothersill 1977; Sammel et al. 2002). To highlight the within-
muscle variation Tarrant and Mothersill (1977) demonstrated that
the rate of glycolysis in four beef muscles (m. semimembranosus,
m. adducter, m. semitendinosus and m. biceps femoris) was, on
average, 64% faster when the measurement was taken at a depth
of 8 cm within the muscle compared with 5 cm. The significance
of this result should be kept in mind when interpreting pH
decline rates based on in situ pH measurements in cooling muscle.

Muscle temperature at slaughter and the subsequent rate of
cooling clearly has a profound effect on post-mortem glycolysis.

Electrical stimulation

Application of electrical stimulation to carcasses was
designed to accelerate post-mortem glycolysis and therefore
minimise the risk of cold shortening during rapid chilling.
Excellent reviews on development, scientific basis and
methods of electrical stimulation are provided by Bendall
(1980) and Chrystall and Devine (1983).

In summary, electrical stimulation results in a biphasic
acceleration in muscle pH decline as illustrated in Fig. 1.
Initially, during stimulation there is a sharp decrease in pH
(ApH ~0.4-0.5 pH units). During this phase, the rate of
glycolysis is ~100—150 times greater than the rate of normal
rigor development (Chrystall and Devine 1983). In the second
phase, the rate of pH decline subsequent to stimulation is
generally faster (1.5-2 times) than that observed in non-
stimulated muscle (Chrystall and Devine 1978; Horgan and
Kuypers 1985). Although there has been debate as to whether
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Fig. 1. Indicative post-mortem pH/time profiles for muscles from
electrically stimulated (—) and non-stimulated (— —) carcasses (adapted
from Ferguson ez al. 2001).
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the latter effect was merely an artefact of higher muscle
temperatures (Bendall 1980), the results of Daly (1997) and
Chrystall and Devine (1978) strongly suggest that temperature
is unlikely to be the sole contributor. Daly (1997) reported a
50-75% increase in post-stimulation pH decline compared
with non-stimulated muscle when both were held at constant
temperature (35°C).

The magnitude of change in the ApH and/or the post-
stimulation rate of pH decline is contingent on several factors
including voltage (Chrystall and Devine 1978; Bendall 1980;
Horgan and Kuypers 1985; Aalhus et al. 1994), frequency
(Chrystall and Devine 1978; Bouton ef al. 1980), current and
wave form (Chrystall and Devine 1978), and duration of
stimulation (Chrystall and Devine 1978; Butchers et al. 1998;
Hwang and Thompson 2001). Moreover, intrinsic muscle
properties such as the pre-stimulation pH (Chrystall and
Devine 1978; Daly et al. 2006; Ferguson et al. 2007) and
muscle fibre type (Devine er al. 1984) also influence the
glycolytic response to electrical stimulation. In these studies, a
larger ApH was evident in those muscles with a higher
pre-stimulation pH and/or high proportion of glycolytic type
IIb fibres. Surprisingly, however, the post-stimulation rate of
decline is typically slower in muscles high in type I1b fibres than in
those with predominantly type I fibres (Devine ef al. 1984).

The mechanisms associated with the post-stimulation
increase in pH decline have not been elucidated. Bendall
(1980) hypothesised that electrical stimulation affected the
sarcoplasmic reticulum capacity to retain Ca>", which led to an
increase in sarcoplasmic reticulum pump activity. However,
equivocal results have been found with respect to the
immediate changes in SR Ca®>-ATPase activity following
electrical stimulation (Tume 1979; Horgan and Kuypers 1985;
Ferguson 2003). Tume (1979) and Ferguson (2003) observed a
reduction in SR Ca®"-ATPase activity following stimulation in
sheep muscle, which contrasts the outcomes of Horgan and
Kuypers (1985) using purified sarcoplasmic reticulum from
rabbit muscle. Tume (1979) concluded that the reduction in
SR Ca”**-ATPase activity following stimulation was permanent
and attributed it to a conformational change in the ATPase,
resulting in reduced affinity for ATP and inorganic phosphate.

Horgan and Kuypers (1985) speculated that another ATPase,
probably actomyosin Ca**-ATPase, was implicated. However,
the prerequisite for increased activity of actomyosin Ca®'-
ATPase is, of course, Ca>*. An increase in cytosolic Ca®" and,
perhaps, elevated Ca®" sensitivity of the regulatory proteins
such as troponin would be required to activate this ATPase.
Whether stimulation accelerates the normal increase in
cytosolic Ca*" typically observed in post-mortem muscle is
not clear yet. However, Daly (1997) proposed that the
stimulation-mediated increase in ADP might trigger increased
leakage of Ca”* from the SR.

Conclusions

Post-mortem energy metabolism plays a crucial role in the
transformation of living tissue, muscle, into a high-quality
food source, meat. The rate and extent of post-mortem
glycolysis has a profound effect on the ultimate quality of
meat. Those biochemical reactions involved in this energy
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metabolism are largely well known and characterised in living
muscle. Despite this, there is still a widespread misconception
about the role of lactate in the development of acidosis following
glycolysis. Although predicated on anaerobic metabolism, there
are gaps in our understanding of how muscle transitions to this
type of metabolism, including the role of mitochondrial function
on ATP utilisation early post-mortem. Moreover, the effects of
different pre- and post-slaughter factors on the kinetics of those
enzymes (e.g. AMPK) involved in carbohydrate metabolism in
post-mortem muscle require more investigation. The knowledge
gained from further study is likely to yield new directions and
potential strategies for optimising the pre- and post-slaughter
management of animals and their carcasses, respectively, so
that meat quality is maximised.
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