© CSIRO 2015 Supplementary Material: Animal Production Science, 2015, 55(8), 949–966. ## **Supplementary Material** ## A review of the genetic and non-genetic factors affecting extended lactation in pasturebased dairy systems Mary Abdelsayed^{A,B,C}, Peter C. Thomson^A and Herman W. Raadsma^A AReproGen Animal BioScience Group, Faculty of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia. ^BDairy Futures CRC Victorian AgriBiosciences Centre, 1 Park Drive, Bundoora, Vic. 3083, Australia. ^CCorresponding author. Email: mary.abdelsayed@sydney.edu.au Table S1. Genetic, phenotypic and environmental correlation (\pm s.e.) estimates for extended lactation milk and protein yield traits between the first 150 (5 months) of the standard 305-day lactation and the last 300 days of extended lactation period as derived by Haile-Mariam and Goddard (2008) NC, not calculated | | Milk traits measured after 300 days of lactation | | | | | | |---|--|-----------------|-----------------|--|--|--| | Milk traits first 300 days of lactation | Genetic | Phenotypic | Environmental | | | | | Cumulative milk yield | | | | | | | | 0–60 days | 0.73 ± 0.03 | 0.30 ± 0.00 | 0.50 ± 0.01 | | | | | 0–90 days | 0.76 ± 0.03 | 0.32 ± 0.00 | 0.53 ± 0.00 | | | | | 0–120 days | 0.80 ± 0.03 | 0.33 ± 0.00 | 0.56 ± 0.00 | | | | | 0–150 days | 0.82 ± 0.03 | 0.34 ± 0.00 | 0.58 ± 0.00 | | | | | Full 300 days | 0.85 ± 0.02 | 0.36 ± 0.00 | NC | | | | | Cumulative protein yield | | | | | | | | 0–60 days | 0.81 ± 0.03 | 0.26 ± 0.00 | 0.51 ± 0.01 | | | | | 0–90 days | 0.83 ± 0.03 | 0.28 ± 0.00 | 0.53 ± 0.00 | | | | | 0–120 days | 0.85 ± 0.02 | 0.29 ± 0.00 | 0.55 ± 0.00 | | | | | 0–150 days | 0.87 ± 0.02 | 0.30 ± 0.00 | 0.57 ± 0.00 | | | | Table S2. Genetic (±s.e.) and phenotypic (in parenthesis) correlation estimates for milk and protein yield in first and second parity measured at 200-day intervals throughout a 600-day lactation obtained by Haile-Mariam and Goddard (2008) $\pm s.e.$ is rounded to zero for phenotypic correlations | | 2nd parity milk yield | | | | |--------------------------|-----------------------|--------------------------|----------------------|--| | 1st parity milk yield | 1st 200 days | 2nd 200 days | 3rd 200 days | | | 1st 200 days | $0.90\pm0.02(0.32c)$ | 0.80 ± 0.03 (0.34) | 0.54 ± 0.07 (0.23) | | | 2nd 200 days | 0.86 ± 0.02 (0.28) | 0.90 ± 0.02 (0.38) | 0.73 ± 0.06 (0.36) | | | 3rd 200 days | 0.67±0.05 (0.16) | $0.84\pm0.03~(0.26)$ | 0.87±0.04 (0.33) | | | • | | 2nd parity protein yield | | | | 1st parity protein yield | 1st 200 days | 2nd 200 days | 3rd 200 days | | | 1st 200 days | $0.93\pm0.01(0.28)$ | $0.83\pm0.03(0.30)$ | $0.51\pm0.08(0.23)$ | | | 2nd 200 days | $0.90\pm0.02(0.24)$ | $0.91\pm0.02(0.32)$ | $0.69\pm0.06(0.32)$ | | | 3rd 200 days | $0.71\pm0.05(0.13)$ | $0.84\pm0.03(0.23)$ | $0.82\pm0.06(0.29)$ | | Table S3. Genetic (below diagonal) and phenotypic (above diagonal) correlation estimates among milk components for extended lactation up to 395 days obtained over three lactations as obtained by Yazgan *et al.* (2010) Genetic correlations s.e. range between 0.06 and 0.30 and phenotypic correlations s.e. range between 0.06 and 0.15 | | Milk yield | Protein
yield | Fat yield | Lactose yield | SCS | (Fat+protein+ lactose) | |---------------|-------------------|-------------------|-------------|---------------|-------------|------------------------| | Milk yield | | 0.88 ^e | 0.73-0.75 | 0.74-0.79 | -0.04-0.11 | 0.71-0.75 | | Protein yield | $0.85 - 0.90^{d}$ | | 0.79-0.81 | 0.73-0.77 | 0.08-0.12 | 0.74-0.78 | | Fat yield | 0.44-0.67 | 0.62-0.83 | | 0.62 - 0.65 | 0.03-0.11 | 0.70-0.74 | | Lactose yield | 0.72 - 0.82 | 0.57 - 0.76 | 0.38-0.51 | | 0.03 - 0.07 | 0.94 | | SCS | -0.42 - 0.07 | -0.09 - 0.14 | 0.12 - 0.37 | -0.05-0.10 | | 0.05-0.10 | | (Fat+protein+ | 0.64 – 0.74 | 0.62 – 0.79 | 0.55 – 0.70 | 0.96-0.98 | -0.16-0.01 | | | lactose) | | | | | | | Table S4. Genetic, phenotypic and environmental correlations (±s.e.) between persistency of milk and fat yield in first and second parity and survival, calving interval (CI) or difficulty at first calving derived from two studies | Trait | Genetic | Phenotypic | Environmental | Authors | |---|---------------|------------|----------------|------------------------------------| | Persistency of milk yield + survival 1st parity | 0.07±0.12 | n.a. | -0.08±0.00 | Haile-Mariam <i>et al.</i> (2003) | | Persistency of milk yield + survival 2nd parity | 0.17±0.13 | n.a. | -0.00 ± 0.00 | Haile-Mariam <i>et al</i> . (2003) | | Persistency of fat yield + survival
1st parity | 0.1±0.12 | n.a. | -0.06 ± 0.00 | Haile-Mariam <i>et al</i> . (2003) | | Persistency of milk yield + CI 1st parity | 0.04±0.11 | n.a. | 0.16 ± 0.00 | Haile-Mariam <i>et al</i> . (2003) | | Persistency of milk yield + CI 2nd parity | 0.18±0.11 | n.a. | 0.19 ± 0.00 | Haile-Mariam <i>et al</i> . (2003) | | Persistency of fat yield + CI 1st parity | 0.09 ± 0.10 | n.a. | 0.11±0.00 | Haile-Mariam <i>et al</i> . (2003) | | Persistency of milk yield + CI 1st parity | 0.17 ± 0.09 | 0.23±0.00 | n.a. | Muir et al. (2004) | | Persistency of milk yield +
difficulty at first calving 1st parity | 0.43±0.12 | 0.01±0.00 | n.a. | Muir et al. (2004) |