Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Genetic analysis of three remnant populations of the rufous hare-wallaby (Lagorchestes hirsutus) in arid Australia

Mark D. B. Eldridge A B E , Linda E. Neaves A C and Peter B. S. Spencer D
+ Author Affiliations
- Author Affiliations

A Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia.

B Department of Biological Sciences, Macquarie University, NSW 2109, Australia.

C Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK.

D School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.

E Corresponding author. Email: mark.eldridge@austmus.gov.au

Australian Mammalogy 41(1) 123-131 https://doi.org/10.1071/AM17008
Submitted: 20 February 2017  Accepted: 23 April 2018   Published: 5 June 2018

Abstract

The rufous hare-wallaby (Lagorchestes hirsutus) is now extinct in the wild on mainland Australia, but survives in captivity. However, endemic populations persist on Bernier and Dorre Islands, Western Australia. This study aimed to compare the genetic diversity and differentiation amongst three remaining rufous hare-wallaby populations using mitochondrial DNA (mtDNA) (cytochrome b, control region) sequence data and nuclear (microsatellite) markers. Levels of microsatellite diversity were low in both island populations but high in the captive mainland population. Levels of mtDNA diversity were low in all three populations. The mainland and island populations of L. hirsutus were found to be significantly differentiated for both microsatellite and mtDNA data, but the two island populations were significantly differentiated only for the microsatellite data. This pattern of differentiation is not consistent with the recognition of two separate island subspecies, but we recommend that the mainland and island populations be regarded as separate subspecies. The low diversity of the island populations and differentiation between island and mainland populations presents both challenges and opportunities for future management.

Additional keywords: Australia, conservation, marsupial, microsatellite, mitochondrial DNA, population structure, translocation.


References

Abbott, I., and Burbidge, A. A. (1995). The occurrence of mammal species on the islands of Australia: a summary of existing knowledge. CALMscience 1, 259–324.

ABRS (2009). Australian faunal directory. Australian Biological Resources Study, Canberra. Available at: http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/index.html [accessed 6 February 2017].

Aplin, K. P., Rhind, S. G., Ten Have, J., and Chesser, R. T. (2015). Taxonomic revision of Phascogale tapoatafa (Meyer, 1793) (Dasyuridae; Marsupialia), including descriptions of two new subspecies and confirmation of P. pirata Thomas, 1904 as a ‘Top End’ endemic. Zootaxa 4055, 1–73.
Taxonomic revision of Phascogale tapoatafa (Meyer, 1793) (Dasyuridae; Marsupialia), including descriptions of two new subspecies and confirmation of P. pirata Thomas, 1904 as a ‘Top End’ endemic.Crossref | GoogleScholarGoogle Scholar |

Bi, K., Vanderpool, D., Good, J. M., Nielsen, R., and Moritz, C. (2013). Unlocking the vault: next-generation museum population genomics. Molecular Ecology 22, 6018–6032.
Unlocking the vault: next-generation museum population genomics.Crossref | GoogleScholarGoogle Scholar |

Braby, M. F., Eastwood, R., and Murray, N. (2012). The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? Biological Journal of the Linnean Society. Linnean Society of London 106, 699–716.
The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness?Crossref | GoogleScholarGoogle Scholar |

Browning, T. L., Taggart, D. A., Rummery, C., Close, R. L., and Eldridge, M. D. B. (2001). Multifaceted genetic analysis of the “Critically Endangered” brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management. Conservation Genetics 2, 145–156.
Multifaceted genetic analysis of the “Critically Endangered” brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management.Crossref | GoogleScholarGoogle Scholar |

Bruford, M. W., and Wayne, R. K. (1993). Microsatellites and their application to population genetic studies. Current Opinion in Genetics & Development 3, 939–943.
Microsatellites and their application to population genetic studies.Crossref | GoogleScholarGoogle Scholar |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology Notes 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar |

Courtenay, J. M. (1993). The systematics of hare-wallabies Lagorchestes Gould 1841 and Lagostrophus Thomas 1887. Ph.D. Thesis, Australian National University, Canberra.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar |

DPaW (2016). Dirk Hartog Island return to 1616. WA Department of Parks and Wildlife: Perth. Available at: http://www.sharkbay.org.au/dirk-hartog-island-ecological-restoration-project.aspx [accessed 6 February 2017].

Earl, D. A., and vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B. (2010). Population and conservation genetics of marsupials. In ‘Marsupial Genetics and Genomics’. (Eds J. E. Deakin, P. D. Waters, and J. A. M. Graves.) pp. 461–497. (Springer: Dordrecht.)

Eldridge, M. D. B., Wilson, A. C., Metcalfe, C. J., Dollin, A. E., Bell, J. N., Johnson, P. M., Johnston, P. G., and Close, R. L. (2001). Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). III. Molecular data confirms the species status of the purple-necked rock-wallaby (Petrogale purpureicollis Le Souef). Australian Journal of Zoology 49, 323–343.
Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). III. Molecular data confirms the species status of the purple-necked rock-wallaby (Petrogale purpureicollis Le Souef).Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Kinnear, J. E., Zenger, K. R., McKenzie, L. M., and Spencer, P. B. S. (2004). Genetic diversity in remnant mainland and ‘pristine’ island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conservation Genetics 5, 325–338.
Genetic diversity in remnant mainland and ‘pristine’ island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Miller, E. J., Neaves, L. E., Zenger, K. R., and Herbert, C. A. (2017). Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii). PLoS One 12, e0172777.
Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii).Crossref | GoogleScholarGoogle Scholar |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software Structure: a simulation study.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar |

Firestone, K. B., Elphinstone, M. S., Sherwin, W. B., and Houlden, B. A. (1999). Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial. Molecular Ecology 8, 1613–1625.
Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (1997). Do island populations have less genetic variation than mainland populations? Heredity 78, 311–327.
Do island populations have less genetic variation than mainland populations?Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (1998). Inbreeding and extinction: island populations. Conservation Biology 12, 665–675.
Inbreeding and extinction: island populations.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology 170, 56–63.

Frankham, R. (2016). Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biological Conservation 195, 33–36.
Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., Ralls, K., Eldridge, M. D. B., Dudash, M. R., Fenster, C. B., Lacy, R. C., and Sunnucks, P. (2017). ‘Genetic Management of Fragmented Animal and Plant Populations.’ (Oxford University Press: Oxford.)

Fumagalli, L., Pope, L. C., Taberlet, P., and Moritz, C. (1997). Versatile primers for the amplification of the mitochondrial DNA control region in marsupials. Molecular Ecology 6, 1199–1201.
Versatile primers for the amplification of the mitochondrial DNA control region in marsupials.Crossref | GoogleScholarGoogle Scholar |

Gonzalez, S., Maldonado, J. E., Leonard, J. A., Vila, C., Barbanti Duarte, J. M., Merino, M., Brum-Zorrilla, N., and Wayne, R. K. (1998). Conservation genetics of the endangered Pampas deer (Ozotoceros bezoarticus). Molecular Ecology 7, 47–56.
Conservation genetics of the endangered Pampas deer (Ozotoceros bezoarticus).Crossref | GoogleScholarGoogle Scholar |

Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485–486.

Hayman, D. L. (1989). Marsupial cytogenetics. Australian Journal of Zoology 37, 331–349.
Marsupial cytogenetics.Crossref | GoogleScholarGoogle Scholar |

Hayman, D. L., and Martin, P. G. (1974). Mammalia I: Monotremata and Marsupialia. In ‘Animal Cytogenetics’. (Ed. B. John.) pp. 1–110. (Gebrüder Borntraeger: Berlin.)

Hayman, D. L., and Sharp, P. (1981). Verification of the structure of the complex sex chromosome system in Lagorchestes conspicillatus Gould (Marsupialia: Mammalia). Chromosoma 83, 263–274.
Verification of the structure of the complex sex chromosome system in Lagorchestes conspicillatus Gould (Marsupialia: Mammalia).Crossref | GoogleScholarGoogle Scholar |

How, R. A., Spencer, P. B. S., and Schmitt, L. H. (2009). Island populations have high conservation value for northern Australia’s top marsupial predator ahead of a threatening process. Journal of Zoology 278, 206–217.
Island populations have high conservation value for northern Australia’s top marsupial predator ahead of a threatening process.Crossref | GoogleScholarGoogle Scholar |

Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32, 128–144.
Evolution of the cytochrome b gene of mammals.Crossref | GoogleScholarGoogle Scholar |

Jackson, S. M., and Groves, C. P. (2015). ‘Taxonomy of Australian Mammals.’ (CSIRO Publishing: Melbourne.)

Kennedy, M. (Ed.) (1992). ‘Australasian Marsupials and Monotremes: An Action Plan for Their Conservation.’ (IUCN: Gland, Switzerland.)

Keogh, J. S., Scott, I. A. W., and Hayes, C. (2005). Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59, 226–233.
Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.Crossref | GoogleScholarGoogle Scholar |

Kitchener, A. C., Breitenmoser-Würsten, C., Eizirik, E., Gentry, A., Werdelin, L., Wilting, A., Yamaguchi, N., Abramov, A. V., Christiansen, P., Driscoll, C., Duckworth, J. W., Johnson, W., Luo, S.-J., Meijaard, E., O’Donoghue, P., Sanderson, J., Seymour, K., Bruford, M., Groves, C., Hoffmann, M., Nowell, K., Timmons, Z., and Tobe, S. (2017). A revised taxonomy of the Felidae. Cat News Special Issue 11, 1–80.

Langford, D. C., and Burbidge, A. A. (2001). Translocation of mala (Lagorchestes hirsutus) from the Tanami Desert, Northern Territory to Trimouille Island, Western Australia. Australian Mammalogy 23, 37–46.
Translocation of mala (Lagorchestes hirsutus) from the Tanami Desert, Northern Territory to Trimouille Island, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Maxwell, S., Burbidge, A. A., and Morris, K. (Eds) (1996). ‘The 1996 Action Plan for Australian Marsupials and Monotremes.’ (Wildlife Australia: Canberra.)

Moritz, C. (1994). Defining “Evolutionary Significant Units” for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining “Evolutionary Significant Units” for conservation.Crossref | GoogleScholarGoogle Scholar |

Osborne, M. J., Norman, J. A., Christidis, L., and Murray, N. D. (2000). Genetic distinctness of isolated populations of an endangered marsupial, the mountain pygmy-possum, Burramys parvus. Molecular Ecology 9, 609–613.
Genetic distinctness of isolated populations of an endangered marsupial, the mountain pygmy-possum, Burramys parvus.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2012). GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar |

Pope, L. C., Sharp, A., and Moritz, C. (1996). Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Molecular Ecology 5, 629–640.
Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci.Crossref | GoogleScholarGoogle Scholar |

Pope, L. C., Sharp, A., and Moritz, C. (1998). The genetic diversity and distinctiveness of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) in New South Wales. Pacific Conservation Biology 4, 164–169.
The genetic diversity and distinctiveness of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) in New South Wales.Crossref | GoogleScholarGoogle Scholar |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

Richards, J. D., Short, J., Prince, R. I. T., Friend, J. A., and Courtenay, J. M. (2001). The biology of banded (Lagostrophus fasciatus) and rufous (Lagorchestes hirsutus) hare-wallabies (Diprotodontia: Macropodidae) on Dorre and Bernier Islands, Western Australia. Wildlife Research 28, 311–322.
The biology of banded (Lagostrophus fasciatus) and rufous (Lagorchestes hirsutus) hare-wallabies (Diprotodontia: Macropodidae) on Dorre and Bernier Islands, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137–138.
DISTRUCT: a program for the graphical display of population structure.Crossref | GoogleScholarGoogle Scholar |

Rowe, K. C., Singhal, S., Macmanes, M. D., Ayroles, J. F., Morelli, T. L., Rubidge, E. M., Bi, K., and Moritz, C. (2011). Museum genomics: low-cost and high-accuracy genetic data from historical specimens. Molecular Ecology Resources 11, 1082–1092.
Museum genomics: low-cost and high-accuracy genetic data from historical specimens.Crossref | GoogleScholarGoogle Scholar |

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). ‘Molecular Cloning: A Laboratory Manual.’ 2nd edn. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor.)

Schliep, K. P. (2011). Phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593.
Phangorn: phylogenetic analysis in R.Crossref | GoogleScholarGoogle Scholar |

Sharman, G. B. (1961). The mitotic chromosomes of marsupials and their bearing on taxonomy and phylogeny. Australian Journal of Zoology 9, 38–60.
The mitotic chromosomes of marsupials and their bearing on taxonomy and phylogeny.Crossref | GoogleScholarGoogle Scholar |

Sharman, G. B. (1989). Opening address: a chromosomal phylogeny of kangaroos. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman, and I. Hume.) pp. v–vii. (Surrey Beatty: Sydney.)

Short, J., and Turner, B. (1992). The distribution and abundance of the banded and rufous hare-wallabies, Lagostrophus fasciatus and Lagorchestes hirsutus. Biological Conservation 60, 157–166.
The distribution and abundance of the banded and rufous hare-wallabies, Lagostrophus fasciatus and Lagorchestes hirsutus.Crossref | GoogleScholarGoogle Scholar |

Short, J., and Turner, B. (1999). Ecology of burrowing bettongs, Bettongia lesueur (Marsupialia: Potoroidae), on Dorre and Bernier Islands, Western Australia. Wildlife Research 26, 651–669.
Ecology of burrowing bettongs, Bettongia lesueur (Marsupialia: Potoroidae), on Dorre and Bernier Islands, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Short, J., Turner, B., and Majors, C. (1989). The distribution, relative abundance and habitat preferences of rare macropods and bandicoots on Barrow, Boodie, Bernier and Dorre Islands. Australian National Parks and Wildlife Service, Canberra.

Short, J., Turner, B., Majors, C., and Leone, J. (1997). The fluctuating abundance of endangered mammals on Bernier and Dorre Islands, Western Australia – conservation implications. Australian Mammalogy 20, 53–61.

Short, J., Richards, J. D., and Turner, B. (1998). Ecology of the western barred bandicoot (Perameles bougainville) (Marsupialia: Peramelidae), on Dorre and Bernier Islands, Western Australia. Wildlife Research 25, 567–586.
Ecology of the western barred bandicoot (Perameles bougainville) (Marsupialia: Peramelidae), on Dorre and Bernier Islands, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Smith, S., and Hughes, J. (2008). Microsatellite and mitochondrial DNA variation defines island genetic reservoirs for reintroductions of an endangered Australian marsupial, Perameles bougainville. Conservation Genetics 9, 547–557.
Microsatellite and mitochondrial DNA variation defines island genetic reservoirs for reintroductions of an endangered Australian marsupial, Perameles bougainville.Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P. (2000). Efficient genetic markers for population biology. Trends in Ecology & Evolution 15, 199–203.
Efficient genetic markers for population biology.Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P., Wilson, A. C., Beheregaray, L. B., Zenger, K., French, J., and Taylor, A. C. (2000). SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology 9, 1699–1710.
SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P. (1996). The use of mitochondrial DNA control region sequencing in conservation genetics. In ‘Molecular Genetic Approaches in Conservation’. (Eds T. B. Smith, and R. K. Wayne.) pp. 125–142. (Oxford University Press: New York.)

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar |

Taylor, A. C., and Cooper, D. W. (1998). A set of tammar wallaby (Macropus eugenii) microsatellites tested for genetic linkage. Molecular Ecology 7, 925–926.

Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.

Thomas, O. (1907). List of further collections of mammals from Western Australia, including a series from Bernier Island, obtained for Mr. W. E. Balston; with field notes by the collector, Mr. G. C. Shortridge. Proceedings of the Zoological Society of London 1906, 763–777.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar |

Thomson, V. A., Mitchell, K. J., Eberhard, R., Dortch, J., Austin, J. J., and Cooper, A. (2018). Genetic diversity and drivers of dwarfism in extinct island emu populations. Biology Letters 14, 20170617.
Genetic diversity and drivers of dwarfism in extinct island emu populations.Crossref | GoogleScholarGoogle Scholar |

Weeks, A. R., Stoklosa, J., and Hoffmann, A. A. (2016). Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Frontiers in Zoology 13, 31.
Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (Eds) (2014). ‘The Action Plan for Australian Mammals 2012.’ (CSIRO Publishing: Melbourne.)