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Petrophysical interpretation and reservoir characterisation on 
Proterozoic shales in National Drilling Initiative Carrara 1, 
Northern Territory 
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Christopher J. BorehamA, Dave DewhurstB, Lionel EstebanB, Chris SouthbyA and Paul A. HensonA  

ABSTRACT 

The Proterozoic succession in the National Drilling Initiative Carrara 1 drill hole, Northern 
Territory, is dominated by tight shales, siltstones and calcareous clastic rocks. As part of 
Geoscience Australia’s Exploring for the Future program, this study aimed to improve the 
Proterozoic shale gas reservoir characterisation by derivation of porosity, permeability and gas 
content from laboratory testing and machine learning approaches to wireline log interpretation. 
The Proterozoic Lawn Hill Formation is divided into four chemostratigraphic packages. The middle 
two packages are further divided into seven internal units according to principal component 
analysis and self-organising map clustering on well logs and inorganic geochemical properties. 
Artificial neural networks were then applied to interpret the mineral compositions, porosity and 
permeability from well logs, density and neutron-density crossplot interpretations. Gas content 
was estimated from the interpreted porosity, gas saturation, total organic carbon and clay 
contents. Petrophysical interpretation results are summarised for all chemostratigraphic packages 
and units. P2 (1126.3–1430.1 m) has the highest potential among the four chemostratigraphic 
packages. P2U1 (1126.3–1271 m) and P2U3 (1335.5–1430.1 m) units have the most favourable 
petrophysical properties for organic-rich shales, with average total gas contents of 1.213 and 
1.315 cm3/g, geometric mean permeability of 6.6 and 25.31 µD and net shale thickness of 53.5 and 
83.3 m, respectively. P3U4 (687.9–697.9 m) has high gas content and permeability, with a net shale 
thickness of 35.9 m. The tight non-organic-rich siltstone and shale reservoirs in package P1 (below 
1430.1 m) have an average gas saturation of 17.4% and a geometric mean permeability of 0.48 µD.  

Keywords: artificial neural networks, chemostratigraphy, gas content, log interpretation, 
machine learning, mineral composition, NDI Carrara 1, permeability, porosity, Proterozoic 
shale, reservoir characterisation. 

Introduction 

In the first phase of Geoscience Australia’s (GA) Exploring for the Future (EFTF) Program 
(2016–2020), two deep crustal seismic reflection surveys (the L210 South Nicholson and 
L212 Barkly Seismic Surveys) were acquired in the South Nicholson region of the Northern 
Territory and Queensland (Fig. 1). Structural interpretations of these survey data discovered 
a large sedimentary depocentre beneath the Georgina Basin, and this depocentre was 
termed the ‘Carrara Sub-basin’ (Carr et al. 2019; Fig. 1). The Carrara Sub-basin 
spans 129 km by at least 190 km from north to south and accommodates thick deposits 
(up to 8 km) formed in both the early Palaeozoic (Georgina Basin) and Proterozoic era 
(Carson et al. 2022a). The Proterozoic sedimentary rocks, particularly the shales, are 
considered equivalent to the prospective rocks of the greater McArthur Basin, Lawn Hill 
Platform and Mount Isa Province (Bailey et al. 2022a; Grosjean et al. 2022). 

National Drilling Initiative (NDI) Carrara 1 is a deep stratigraphic drill hole (Fig. 1) 
drilled under the MinEx CRC-led NDI program, in collaboration with GA and the Northern 
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Territory Geological Survey (NTGS). NDI Carrara 1 pene
trated carbonate formations of the Georgina Basin underlain 
by the Proterozoic succession of the Carrara Sub-basin 
beneath a regional unconformity. The preliminary stratigra
phy defined at the drill hole site included the following 
Cambrian strata of the Georgina Basin: Camooweal Dolostone 
(0–249 m), Currant Bush Limestone (249–530.8 m) and the 
Border Waterhole Formation (530.8–630.36 m), and the 
following Proterozoic strata of the Lawn Hill Platform: 
Widdallion Sandstone Member of Lawn Hill Formation 
(630.36–687.9 m), undivided Lawn Hill Formation (687.9– 
1430.1 m) and the Plain Creek Formation (1430.1 m – total 
depth) (Geoscience Australia 2021). 

Two stages of continuous coring were carried out from 
283.9 m to total depth. As part of the EFTF program, a 
variety of laboratory tests were conducted for organic and 
inorganic geochemical properties (Carson et al. 2021), geo
chronological age (Carson et al. 2022a), as well as petrophy
sical and geomechanical properties (Bailey et al. 2022a,  
2022b). Wireline logging was undertaken and pre-processed 
by Weatherford Logging, including spectral gamma ray (con
centrations of potassium (GRPON,%), thorium (GRTHN, ppm) 
and uranium (GRURN, ppm)), compressional wave slowness 
(DTCN, µs/ft), bulk density (DENNN, g/cm3), limestone neu
tron porosity (NPRLNC, m3/m3), photoelectric factor (PDPEN, 
b/e), shear wave slowness (DTSXXN, µs/ft), Stoneley wave 

McArthur Basin

Beetaloo Sub-basin

South Nicholson
Basin

Mount Isa Province L212 Barkly survey

L210 South Nicholson survey

L180 Mount Isa survey

NDI Carrara 1

NDI East Tennant drill hole

Major mine

Camooweal 2D seismic survey
GSQ (2019)

Carrara Sub-basin

Murphy Province

Fig. 1. Location of the NDI Carrara 1 stratigraphic drillhole and seismic survey lines across the McArthur Basin, South 
Nicholson Basin and Carrara Sub-basin ( Carson et al. 2022a).   
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slowness (DTDTXN, µs/ft), spontaneous potential (SPCGN, 
mv), deep (RTAFN, ohmm) and shallow resistivity (FEFEN, 
ohmm) logs, array induction resistivity and micro-imager 
logs (Geoscience Australia 2021). This study integrated con
ventional wireline logs, laboratory measurements, density 
and neutron-density crossplot interpretation results (Wang 
et al. 2023) with the aim of approximating the petrophysical 
properties using artificial neural network techniques. 
Reservoir characterisation was performed on the defined 
chemostratigraphic packages and internal units. 

Chemostratigraphic units 

Stratigraphy and age of Proterozoic succession 

The age of Lawn Hill Formation is 1595 ± 6–1611 ± 4 Ma 
(ASUD 2022). Recent geochronological testing shows that 
the ages at 1012 m, 1204 m and the interval of 1580–1650 m 
are ca. 1588, 1601 and 1606–1614 Ma, respectively (Carson 
et al. 2022a). This implies that the Lawn Hill Formation 
occurs from the regional unconformity (base Georgina 
Basin) to total depth in NDI Carrara 1. 

Below the Widdallion Sandstone Member, the Lawn Hill 
Formation was further divided into three intervals referred 
to as the lower Lawn Hill Formation (1430.1 m to total 
depth), Lawn Hill shale (1126.3–1430.1 m) and upper 
Lawn Hill (687.9–1126.3 m) (Bailey et al. 2022a; Wang 
et al. 2023; Fig. 2). The lower Lawn Hill consists of tight 
sandstone, siltstone and shale with a small portion of tuffa
ceous clastics (Madden et al. 2022). The Lawn Hill shale 
contains thick organic-rich black shales with minor thin 
tuffaceous material (Carson et al. 2022a). The upper Lawn 
Hill Formation is mainly characterised by micrite, claystone, 
siltstone and carbonaceous claystone (top). The Widdallion 
Sandstone Member comprises mainly calcareous and dolo
mitic siltstone (Crombez et al. 2022). 

Four hundred and nineteen samples from both the 
Palaeozoic and Proterozoic successions were tested for 
inorganic geochemical properties using X-ray fluorescence 
(XRF)/inductively coupled plasma–mass spectrometry (ICP- 
MS) methods. The XRF/ICP-MS testing provided the weight 
percentages of 11 oxides, concentrations of 51 elements, loss 
on ignition, and total carbon and sulplur (Carson et al. 2021). 
Four hundred and twenty samples were tested for mineral 
compositions with quantitative X-ray diffraction (QXRD) 
techniques, and 18 mineral groups were identified in NDI 
Carrara 1 (Carson et al. 2022b). Fluid inclusion stratigraphy 
(FIS) analysis was performed on 428 samples from cuttings 
and cores (Cowan et al. 2022), providing the responses of 180 
components, which have the atomic mass unit from 1 to 180. 

The Lawn Hill Formation is divided into four chemo
stratigraphic packages based on the vertical variations of 
lithofacies, inorganic geochemical properties and mineral 
compositions (Figs 2, 3, Table 1): package 1 (P1, equivalent 

to the lower Lawn Hill Formation), package 2 (P2, equivalent 
to the Lawn Hill shale), package 3 (P3, equivalent to the upper 
Lawn Hill Formation) and package 4 (P4, equivalent to 
the Widdallion Sandstone Member). P1 has the highest per
centage of (SiO2 + Al2O3 + K2O + Na2O), whereas P3 has 
dual peaks (Fig. 3a). P3 has high content of (CaO + MgO) 
(Fig. 3b). P4 has different content distributions of clastics 
(quartz + feldspar + clay) and carbonate from P3 (Fig. 3c, d). 
The shale-rich intervals are abundant in Be, Ce, Co, Cr, Ga, 
Ge, Gd, Nb, Rb, Sc, Tb, Ti, V and Zr. The tuffaceous clastics 
(1430.1–1460 m, P2) have the very low concentrations of V 
and Sr, and negligible total organic carbon (TOC) content 
(Fig. 2). Different content distributions of quartz, feldspar, 
clay minerals and carbonate minerals present the variations 
of mineral assemblages in the four packages (Fig. 3c, d). 

For the purpose of unconventional reservoir evaluation, it 
is necessary to define the organic-rich shale units inside 
each chemostratigraphic package. According to the labora
tory measured and interpreted TOC content profiles 
(Butcher et al. 2021; Wang et al. 2023), P1 and P4 have 
no organic-rich shale, with TOC content ≥1 wt%. Further 
definition of internal chemostratigraphic units were per
formed for P2 and P3 through principal component analysis 
(PCA) on wireline logs, XRF/ICP-MS, QXRD, FIS data and 
self-organising map (SOM) clustering on the principal com
ponents derived from well logs. 

Principal component analysis 

As an exploratory tool for data analysis, PCA is a popular 
technique to reduce dimensionality and extract the most 
from the information. At the same time, this technique mini
mises information loss and increases the interpretability of a 
large data set (Jolliffe and Cadima 2015). After normalising the 
input data, a symmetric covariance matrix is constructed to list 
the correlations among various input parameters (dimensions). 
The principal components are identified by computing the 
eigenvectors and eigenvalues of the covariance matrix. The 
principal components are the new variables derived from lin
ear combinations or a mixture of initial variables. 

The eigenvalues of the covariance matrix are ordered 
from the largest to smallest, and the first principal compo
nent accounts for the largest possible variance in the data set. 
The first principal component vector indicates the direction 
of greatest variability in data space. The first few principal 
components usually make over 95% contribution to the total 
variance in a data set. This benefit was used to reduce 
dimensionality and extract most of the variability of the 
original data set, including data from well logs, inorganic 
geochemical properties (ICP/XRF), mineral compositions 
(QXRD) and FIS data. The well log data include GRPON, 
GRTHN, GRURN, DTCN, DENNN, NPRLNC, PDPEN, 
DTSXXN, DTDTXN, RTAFN, FEFEN, SPCGN logs and 
neural network interpreted TOC content (TOCNN (wt%) 
(Wang et al. 2023). 
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The first three principal components or eigenvectors were 
selected when they explained over 95% of the total variance 
of the original data set. Table 2 lists the first three principal 
components (PC1, PC2 and PC3) derived from well logs, 
XRF/ICP, QXRD and FIS data. The first principal component 
contributes 52.1–79% of the total variance in the four data 
sets (Table 2). This first principal component is therefore 

used to subdivide the chemostratigraphic packages into 
internal units. 

Self-organising map 

A SOM is a two-layer neural network, including both an 
input and Kohonan layer and using an unsupervised 

Fig. 2. Data from Proterozoic succession collected in NDI Carrara 1. Track 1: driller’s depth below ground level (MD, m); Track 2: 
stratigraphy ( Bailey et al. 2022a;  Carson et al. 2022a); Track 3: chemostratigraphic packages; Track 4: chemostratigraphic units; Track 5: 
lithological descriptions ( Carson et al. 2022a); Track 6–9: well logging data; Track 10: mineral compositions (QXRD_Lab) from QXRD testing; 
Track 11: compositions from XRF test (XRF); Tracks 12–14: concentrations of Be, Co, Cr, Ga, Gd, Ge, Rb, Sc, Sr, Ti, V and Zr (ppm) from ICP- 
MS test; Track 15: FIS responses of CH4, C2H6, CO2 and H2S; Track 16–17: first and second principal components from well logs, XRF/ICP, 
QXRD and FIS data (PC1log, PC1ICP, PC1XRD, PC1FIS, PC2log, PC2ICP, PC2XRD and PC2FIS); Track 18: cumulative petrophysical classes 
from SOM clustering on the first three principal components from well logs; Track 19: methane and ethane responses from mudlog gas (C1 and 
C2, ppm), and laboratory measured TOC content (TOC, wt%). W. Sst = Widdallion Sandstone Member.   
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competitive learning technique (Kohonen 1982). The SOM 
technique has been applied in clustering well logs to derive 
petrophysical groups or classes (Wang et al. 2022). 

In this study, SOM clustering was performed to define 10 
petrophysical groups or classes on the first three principal 
components derived from well logs data with PCA using the 
Ipsom module in Schlumberger’s TechlogTM platform. The 

clustered petrophysical classes together with principal com
ponents were used to define three and four internal units, 
respectively inside P2 (P2U1–P2U3) and P3 (P3U1–P3U4) 
(Table 1, Figs 2, 4). The different distributions of the first 
principal components for the internal units in P2 and P3 can 
be clearly distinguished in Fig. 4. The details of chemostrati
graphic packages and internal units are listed in Table 2. 
The following formation evaluation and reservoir character
isation will be based on the defined chemostratigraphic 
packages and units. 

Petrophysical interpretation 

This study aimed to derive the mineral compositions, total 
and gas porosity, permeability and gas content by integrat
ing the well log data and laboratory measurements for 
characterising the unconventional gas reservoirs in the 
Proterozoic succession in NDI Carrara 1. 

The general form for a linear regression task can be 
expressed as: 

y w x b= +
i

n
i i

=1
(1)  

where y is the dependent variable (output), xi(i = 1, …, n) 
are the independent variables (inputs), wi(i = 1, …, n) are 
the weights and b is the intercept or bias. The purpose of 
regression is to find the optimal weights and bias to achieve 
a reliable relationship model between the input and output 
variables. The linear multivariate regression (one layer of 
weights) was used to estimate petrophysical properties 
(Asquith and Krygowski 2004). However, it is difficult to 

Table 1. Stratigraphic units in NDI Carrara 1.       

Top Base Formation Package Unit   

630.36  687.9 Widdallion Sandstone P4  

687.9  723.8 Upper Lawn Hill P3 P3U4 

723.8  797.5 P3U3 

797.5  938.2 P3U2 

938.2  1126.3 P3U1 

1126.3  1271 Lawn Hill shale P2 P2U3 

1271  1335.5 P2U2 

1335.5  1430.1 P2U1 

1430.1  1750.82 Lower Lawn Hill P1    

Table 2. Proportions of variance of principal components (PCs) 
derived from different data sets.       

Dataset PC1 PC2 PC3 All three PCs   

Well logs  0.79  0.183  0.021  0.994 

XRF/ICP  0.68  0.224  0.084  0.988 

QXRD  0.589  0.309  0.067  0.965 

FIS  0.521  0.433  0.029  0.983   
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Fig. 4. Distributions of the first principal components from XRF/ICP-MS data (a) and from well logs (b) in the package 2 (a) and 
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estimate the parameters where the relationships are com
plex and non-linear (Wong et al. 1995), such as in the 
Proterozoic shales in NDI Carrara 1. 

As a widely used machine learning approach, the artificial 
neural networks (ANNs) estimator is a non-linear estimator 
using multiple layers of weights and biases, which have been 
applied to estimate hard data, such as laboratory measure
ments, from seismic attributes, well logs and conceptual 
geological descriptions in the petroleum domain (Raiche 
1991; Wong et al. 1995; Wang et al. 1999, 2021, 2022). 

In this study, ANNs were employed to interpret mineral 
compositions, porosity and permeability from well logs, 
followed by the interpretations of adsorbed and free gas 
contents. 

Artificial neural networks 

Fig. 5 presents a schematic architecture of ANNs with input, 
output and three hidden layers (Roberts et al. 2022; Wang 
et al. 2022). Each layer has a different number of neurons. 
The input layer imports the input parameters, including the 
selected well logs and conventional (density and neutron- 
density crossplot) interpretation results in this study. The 
neurons from the input to the output layer are connected 
by weights. During the forward (prediction) process, the 
input of each neuron in hidden and output layers is a linear 
combination of neuron outputs in the former layer, while the 
output is a function (activation function) of the linear com
binations. The number of output neurons is dependent on the 
number of learning targets, such as the laboratorymeasured 
multiple mineral contents or single porosity target. A loss 
(error) function is constructed by comparing the approxima
tions with targets. The error committed in the forward 
(prediction) process is then injected into the network (back
propagation) and updates the network parameters (weights 
and biases) to perform better in the next iteration (Wong 
et al. 1995; Mebsout 2020; Roberts et al. 2022). 

All the input parameters were normalised to be within 
[−1, 1], and the output parameters were normalised to be 

within [0, 1] before neural learning. Mini-batch gradient 
descent method was used to update network parameters. 
The training dataset was randomly subdivided into a num
ber of batches, and the error gradient was estimated across a 
small subset of samples from the training dataset. An adap
tive momentum estimation was used to compute adaptive 
learning rates and avoid oscillations during optimisation by 
accelerating the descent in the right direction (Mebsout 
2020; Roberts et al. 2022). 

A grid search approach was used to perform sensitivity 
analyses and find the optimal hyperparameters of neural 
networks. The hyperparameters for neural network learning 
included the number of hidden layers and neurons, selection 
of activation function (e.g. rectified linear unit (ReLU), hyper
bolic tangent (tanh) and sigmoid function), initial learning 
rate and batch size. The criteria used in neural learning 
included the mean square error (MSE), mean absolute error 
(MAE) and correlation coefficient between approximations 
and targets. 

Mineral composition interpretation 

Lithology is one of the most important topics in formation 
evaluation. The logging responses can be sensitive to solid 
components (minerals), although log data are frequently 
used to interpret the porosity and fluid saturation. The 
presence of clays may lower the resistivity, or increase 
the bulk density or the propagation velocity of acoustic 
waves besides the conventionally derived gamma ray- 
based volume of clay. In a conventional approach, a linear 
system of equations is used to estimate mineral composi
tions (Schlumberger 2013), which offers a coarse guide to 
understanding rock compositions. However, the linear sys
tem solvers require a set of good-quality log curves and a 
limited number of minerals to solve, otherwise the problem 
would be mathematically undetermined. Due to the uncer
tainties in well logs and the complexity of mineral compo
sitions, it is challenging to describe the mineral assemblage 
using conventional multi-mineral interpretation by solving 
a set of linear equations. Thus, ANNs were used to approxi
mate the laboratory measured weight percentages of 
mineral compositions from well logs in the Proterozoic 
succession. 

Laboratory measurements 
Two hundred and fifty-three samples from the Proterozoic 

succession were analysed via QXRD testing, with 14 mineral 
groups identified. These include quartz, K-feldspar, plagio
clase, calcite group-calcite, dolomite, calcite group-siderite, 
mica, chlorite, kaolinite-serpentine and pyrite, with the 
minor contents of apatite, rutile, epidote and grossular 
groups (Carson et al. 2022b). Table 3 lists the statistics 
of mineral groups from laboratory measurements. The fol
lowing groups of minerals – feldspar (K-feldspar and plagio
clase groups), clay (mica, chlorite and kaolinite groups), 

Input layer Hidden layer Output layer

Fig. 5. Schematic architecture of artificial neural networks.  

L. Wang et al.                                                                                                                                       The APPEA Journal 

236 



carbonate (calcite, dolomite and siderite groups) and minors 
(apatite, rutile, epidote and grossular groups) are also listed 
in Table 3. Mineral carbon (MINC) is the content of inorganic 
carbon. 

Supplementary Table S1 lists the correlation coefficients 
between major mineral groups and eight well logs data. 
Well logs are correlated with the contents of predominant 
mineral groups with different correlation coefficients 
(Supplementary Table S1). 

Data and method 
In the architecture of neural networks (Fig. 5), 10 input 

parameters were used: GRPON, GRTHN, GRURN, DTCN, 
DENNN, NPRLNC, PDPEN, RTAFN, FEFEN and SPCGN 
logs (Fig. 2). Two interpretation runs were conducted to 
produce different output parameters using ANNs with 
mini-batch gradient descent. The output parameters of the 
first interpretation run included the contents of feldspar (K- 
feldspar and plagioclase), carbonate (calcite, dolomite and 
siderite), clay (mica, chlorite and kaolinite), minors (apatite, 
rutile, epidote and grossular) and inorganic carbon (MINC). 
The output parameters of the second interpretation run were 
the laboratory measured contents (wt%) of 14 mineral 
groups (QXRD_Lab in Fig. 2). The training patterns with 
both the well logs and QXRD testing results were con
structed for each set of trainings. A randomly selected 
20% of training patterns were used as testing patterns. 

Interpretation results 
After the sensitivity analysis that used a grid search 

approach, the hyperparameters of the best neural network 
models of both runs for mineral composition interpretation 
are listed in Table 4. Supplementary Table S2 lists the corre
lation coefficients between the laboratory measured and neu
ral network interpreted contents of mineral compositions. 

The results of the neural network interpreted mineral 
compositions correlated highly with the laboratory measure
ments. The curves indicate the main variation trends of 
different mineral groups, and they correspond to the varia
tions in lithological sequence and well logs (Fig. 6). The 
interpreted contents of 14 mineral contents were merged 
as an array data of QXRD_NN. Fig. 6 shows QXRD_NN and 
the contents of quartz, feldspar, carbonate, clay, minor min
erals and MINC. 

There was a high correlation between the interpreted 
contents of the predominant minerals and laboratory mea
surements. It was difficult for neural networks to learn the 
underlying relationships for those low-content or minor 
minerals (particularly the zero contents). This resulted in 

Table 3. Statistics of the laboratory measured contents of mineral 
groups from the samples in the Proterozoic succession.       

Mineral Minimum Maximum Average Median   

Quartz  0  87  38.33  39 

K-feldspar  0  75  11.74  9.5 

Plagioclase  0  24  3.92  3 

Calcite  0  83  12.53  0 

Dolomite  0  94  5.38  0 

Siderite  0  31  1.41  0 

Mica  0  77  22.69  25 

Chlorite  0  9  2.24  2 

Kaolinite  0  7  0.28  0 

Pyrite  0  11  1.18  0 

Apatite  0  10  0.18  0 

Rutile  0  2  0.04  0 

Epidote  0  5  0.04  0 

Grossular  0  2  0.02  0 

Feldspar  0  75  15.66  15 

Carbonate  0  94  17.91  0 

Clay  0  77  25.21  28 

Minors  0  10  0.27  0 

MINC  0  9.4  1.83  0.33   

Table 4. Hyperparameters of the best neural network models for interpreting mineral compositions, total and gas porosity and logarithmic 
permeability in the Proterozoic succession.        

Hyperparameter Mineral composition Petrophysical property 

Run 1 Run 2 Total 
porosity 

Gas 
porosity 

Logarithmic 
permeability   

Hidden layers (32, 64, 32) (32, 64, 32) (32, 64) (32, 32) (32, 64) 

Activation function ReLU ReLU ReLU ReLU ReLU 

Initial learning rate 0.01 0.01 0.01 0.006 0.002 

Batch size 6 6 1 2 2 

MSE for test data 0.01 0.091 0.01 0.073 0.008 

MAE for test data 0.07 0.053 0.075 0.241 0.071 

Maximum interation number 200 200 200 100 100   
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lower correlation coefficients between approximations and 
laboratory measurements. The content of low-content 
(minor) minerals were interpreted again using the same 
input parameters, but neural networks were trained sepa
rately with one output parameter, i.e. content of each low- 
content mineral. 

The brittleness index (unitless) was estimated from the 
interpreted mineral contents of quartz, calcite and clay 
minerals (Jarvie et al. 2007) as: 

w
w w w

Brittleness index =
+ +

Quartz

Quartz Calcite Clay
(2)  

where wQuartz, wCalcite and wClay are the contents of quartz, 
calcite and clay (wt%). 

Porosity and permeability interpretation 

It is a challenge to interpret the total porosity in shale reser
voirs with low porosity, ultra-low permeability, and high 
content of organic matter and clay minerals. In Wang et al. 
(2023), the TOC content was interpreted from well logs using 
ANNs for the Proterozoic succession in NDI Carrara 1. The net 
shale or organic-rich shale was identified where TOC content 
was more than 1 wt%. Bulk density logs were used to estimate 
the total porosity for shales by removing the kerogen effect on 
density logs and adding organic porosity estimated from TOC 
content and thermal maturity analysis. The correlation 
coefficient between the laboratory measured and interpreted 
total density porosity was 0.3912. However, it is difficult to 
estimate the permeability from well logs using conventional 
interpretation or linear regression. This study used neural 
networks and aimed to integrate the well logs, previously 
interpreted petrophysical properties, TOC content and labora
tory measurements to improve the total porosity interpreta
tion and to approximate the gas porosity and logarithmic 
permeability for the Proterozoic succession in NDI Carrara 1. 

Laboratory measured porosity and permeability 
Thirty-two core plug samples of different rock types 

extracted from the Proterozoic succession in NDI Carrara 1 
were tested for petrophysical properties in a CSIRO lab 
(Bailey et al. 2022b), including:  

• Dry bulk density together with the core imaging through 
medical X-ray Computerised Tomography technology.  

• Grain density measured from powders (ground from dry 
core plugs) with a helium gas displacement pycnometer. 

• Total porosity calculated from the derived dry bulk den
sity and grain density. 

• Gas porosity tested on dry core plugs through gas (nitro
gen and helium) expansion.  

• Permeability measured with gas (helium and nitrogen) 
injection for the samples with a permeability of higher 
than 1 μD. Ultra-low permeability (<1 µD) samples were 
tested with an unsteady state pulse decay method. 

During the testing processes with nitrogen gas, all 32 sam
ples were first tested for gas porosity and permeability along 
the normal direction or tilt to bedding (vertical), and seven 
laminated samples were selected from the 32 samples and 
tested for permeability along the direction parallel to bed
ding (horizontal). The measured horizontal permeability 
results are approximately 10 times that of their vertical 
results. The dry bulk density, grain density, total porosity 
and nitrogen porosity are from the samples with the same 
sampling depths. 

Helium gas porosity and permeability were tested on 20 
samples with the sample locations near the samples for 
nitrogen testing. Helium permeability testing was conducted 
along the direction parallel to the bedding. For the purpose 
of well log interpretation, 32 laboratory measurements for 
total and gas porosity and horizontal permeability were 
compiled from helium gas testing results (20 samples) plus 
part of the nitrogen testing results (12 samples) where 
helium gas tests were not conducted. 

Table 5 lists the statistics of laboratory measured porosity 
and permeability of 32 samples from the Proterozoic succes
sion. The gas porosity occupies a small portion of total 
porosity. 

Data and method 
Supplementary Table S3 lists the correlation coefficients 

(R2) between the laboratory measured petrophysical propert
ies, well logs, conventional (density and neutron-density 
crossplot) interpretation results. Well logs and conventional 
interpretation results correlate to some extent with laboratory 
measured porosity and permeability, particularly between the 
interpreted and laboratory measured total porosity. ANNs 
were used to interpret total and gas porosity and logarithmic 
permeability by using the conventional wireline logs and pre
vious interpretation results (Wang et al. 2023) (Supplementary 
Table S3) as the input parameters (Fig. 5). 

The sampling depths of total porosity were slightly differ
ent from those samples for helium porosity and permeability 
testing. Two neural network interpretation runs were per
formed for different output parameters. One used the labo
ratory measured total porosity (%) as the output or target 
parameter. The other was constructed for interpreting gas 
porosity (%) and logarithmic horizontal permeability (mD). 

Table 5. Statistics of laboratory measured porosity and permeability 
of the Proterozoic samples.      

Statistics Total 
porosity (%) 

Gas 
porosity (%) 

Logarithmic 
permeability 

(mD)   

Minimum 1.45 0.12 −4.178 

Maximum 7.22 1.44 −0.580 

Average 3.35 0.54 −2.726 

Median 3.34 0.42 −2.637   

www.publish.csiro.au/aj                                                                                                                            The APPEA Journal 

239 

https://www.publish.csiro.au/aj


Thirty-two training patterns were constructed, respectively 
for each interpretation run using laboratory measurements. 

It is hard to construct statistically effective testing data 
from a limited number of training patterns, and this makes it 
a challenge for running linear or non-linear regression. The 
use of a limited number of available data may result in 
overfitting of training data and poor performance of testing 
data. In this study, the neural network approach with sto
chastic gradient descent was used to interpret the porosity 
and permeability from well logs using the randomly selected 
four training patterns for testing purpose. The predominant 
rock types of the laboratory tested samples included black 
shale, limestone, siltstone and bedded turbidite. Stratified 
random sampling was used to sample the testing data from 
each of the four rock type groups. The neural network 
training was conducted with an elaborate sensitivity analy
sis. The evaluation of the performance of neural network 
learning was based on errors (MSE and MAE), correlation 
coefficients between approximations and targets, and geo
logical interpretability. 

Interpretation results 
The hyperparameters of the best neural network models 

for interpreting total and gas porosity and logarithmic per
meability are listed in Table 4. Table 6 lists the MAE, MSE 
and correlation coefficients between the approximations 
and targets of all the available data (training and testing 
data) in the best neural network models. The approxima
tions from the best neural network models have high corre
lation coefficients (R2) with targets (Table 6). The 
interpreted total and gas porosity and logarithmic perme
ability curves (PHIT_NN, PHIG_NN and PERM_NN, Fig. 7) 
present the reasonable vertical distributions, corresponding 
to the vertical variations in the lithological sequence, well 
logs, laboratory measured and interpreted TOC contents. 

Gas content 

Shale gas is a type of unconventional natural gas that is 
trapped within very tight and extremely low permeability 
shale source rocks. A small amount of gas is dissolved in 
kerogen, asphaltene, liquid hydrocarbon and formation 
water, whereas the majority of natural gas exists as free 
gas and adsorbed gas (Cipolla et al. 2013). 

Adsorbed gas content 
The adsorbed gas content (GCa) is a surface component 

with the gas physically adsorbed on the large surface area of 
the micropores in organic matter and clay minerals (Langmuir 
1918; Ambrose et al. 2010). Sorption isotherm measurements 
are generally used to quantify GCa by establishing an equili
brium adsorption isotherm. Four shale samples were tested for 
methane adsorption and desorption isotherms using the 
CSIRO High Pressure Temperature adsorption rig (Lupton 
and Heryanto 2022) to determine the gas storage capacity 
(GCa) (Table 7). GCa (cm3/g) is positively correlated with the 
laboratory measured TOC and clay contents in the Proterozoic 
shales (Fig. 8), and a linear regression was performed on the 
three parameters. 

The relationship between GCa (cm3/g) and the TOC and 
clay contents for all four isotherm testing samples was con
structed as follows: 

Adsorbed gas content (GC ) = 0.0891
× (TOC content, wt%)
+ 0.025 × (Clay, wt%)

a

(3)  

The linearly estimated GCa has the correlation coefficient 
(R2) of 0.8933 with the laboratory measurements. 

In this study, Eqn 3 was used to estimate the GCa_NN, 
cm3/g from the neural network interpreted TOCNN and clay 
contents interpreted for the organic-rich shales in the 
Proterozoic shales. 

Free gas content 
The resistivity of mud filtrate is 0.063 Ωm@25°C, and 

formation water resistivity was estimated from the resistivity 
ratio method with the resistivity of the mud filtrate, flushed 
zone and true formation (Asquith and Krygowski 2004). 
Total water saturation was estimated from total porosity, 
formation true resistivity and volume fraction of shale 
using the dual water equation in Schlumberger’s TechlogTM 

platform (Schlumberger 2013). The total water saturation 
(Swt_NN) was computed with the Levenberg–Marquardt algo
rithm iteration in Techlog™, and hence, the total gas satura
tion (Sgt_NN) was calculated as: 

S S_NN = 1 _NNgt wt (4)  

Free gas content (GCf_NN, cm3/g at standard conditions) 
was calculated using the following equations (Ambrose 
et al. 2010): 

B
S

M

GC _NN = 1 × (1 _NN)

4.221 × 10 × ˆ × GC _NN

f
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(5)  

where ϕt is the neural network interpreted total porosity 
(m3/m3); Swt_NN is the total water saturation (m3/m3); 

Table 6. Learning results from the best neural network models for 
interpreting total and gas porosity and logarithmic permeability for all 
training patterns.       

MSE MAE R2   

Total porosity (%) 0.0262 0.1386 0.7467 

Gas porosity (%) 0.0116 0.0635 0.7516 

Logarithmic permeability (mD) 0.0117 0.0818 0.7214 

MSE, mean square error; MAE, mean absolute error; R2, correlation 
coefficient.  
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ϕt × (1 − Swt) is the bulk gas volume (m3/m3); ρb is the bulk 
density of shale rock (g/cm3); Bg is the gas formation volume 
factor (Vreservoir/Vsurface, and only methane was considered in 
this study); M̂ is the molecular weight of methane (g/mol) 
(M̂ = 16.04 g/mol); ρs is the density of adsorbed gas (g/cm3) 
(Ambrose et al. 2010); GCa is the adsorbed gas content 
(cm3/g). Gas formation volume factor (Bg) was estimated 
using the compressibility of methane as: 

B zT
P

= 0.3507 ×g (6)  

where z is the methane compressibility factor, which was 
estimated using Peng–Robinson’s equation-of-state (Peng 
and Robinson 1976); P (bar) and T (°K) are the formation 
pressure and temperature. 

Total gas content (GCt_NN, cm3/g) is the sum of free and 
adsorbed gas contents. Fig. 7 presents the interpreted poros
ity and gas contents of the Proterozoic shale reservoirs. 

Shale gas reservoir characterisation 

Reservoir characterisation was conducted on the chemo
stratigraphic packages and internal units (Table 1, Fig. 2). 

Petrophysical interpretation results of the Proterozoic suc
cession in NDI Carrara 1 (Figs 6, 7) were summarised in the 
supplementary tables for the four chemostratigraphic 
packages (Supplementary Table S4), organic-rich shales in 
P2 and P3 (Supplementary Table S5), tight non-organic-rich 
rocks in P1, P2 and P3 (Supplementary Table S6), organic- 
rich shales of internal units in P2 (Supplementary Table S7) 
and P3 (Supplementary Table S8). The reservoir properties 
in the supplementary tables include the averages of petrophy
sical properties, thickness of formation (Gross_thickness, m) 
and organic-rich shales (Net_shale, m). 

Supplementary Table S4 lists the average contents of TOC 
and mineral compositions, petrophysical properties and gas 
concentrations from mudlog gas in different packages of the 
Proterozoic succession. Compared to P3 and P4, P1 and P2 have 
higher contents of quartz, feldspar and clay minerals; lower 
contents of carbonate minerals; higher gas saturation, perme
ability and brittleness index; and higher mudlog gas responses. 

The predominant organic-rich (net) shales are present in 
packages 2 and 3 (Fig. 7). The organic-rich shales in P2 have 
higher gas saturation, permeability, free and adsorbed gas 
contents and favourable brittleness indices compared to P3 
(Supplementary Table S5). The net shale thickness values of 
P2 and P3 are 150.3 m and 166.6 m, respectively. 

Table 7. Laboratory measured isotherm testing parameters, TOC and clay contents (VL: Langmuir volume; PL: Langmuir pressure).        

Depth range Langmuir 
parameter 

1136–1136.2 m 690.3–690.5 m 1210.32–1210.4 m 1344.83–1345.03 m   

TOC content (wt%)  1.55 5.482 0.43 1.46 

Clay content (wt%)  39 29 19 30 

Adsorption VL 1.68 3.33 0.46 1.89 

PL 7.02 13.3 3.15 11.8 

Desorption VL 1.81 3.65 0.59 2.1 

PL 8.28 16.2 8.3 14.1 

Reservoir pressure (MPa)  12.21 7.39 13.02 14.47 

Gas content from adsorption test (cm3/g)  1.07 1.19 0.37 1.04 

Gas content from desorption test (cm3/g)  1.08 1.14 0.36 1.06   

(a) (b)
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Besides organic-rich shales, tight non-organic-rich gas 
reservoir rocks (TOC content < 1.0 wt% and Sgt > 0) are 
also present in the Proterozoic succession. These include 
tight siltstones, clayey siltstone and shales. Supplementary 
Table S6 presents the average contents of mineral composi
tions, porosity, permeability (geometric mean), total gas 
saturation, brittleness index and mudlog gas concentrations 
for the tight non-organic-rich gas reservoir (TOC content  
< 1.0 wt% and Sgt > 0). P1 has no significant organic-rich 
shales, but it has the presence of tight non-organic-rich gas 
reservoirs with the interpreted non-zero gas saturation, per
meability, and brittleness index, and it corresponds qualita
tively to the gas peaks in the mudlog gas profile (Fig. 7). No 
significant hydrocarbon-bearing reservoirs were interpreted 
for organic-rich shales or tight non-organic-rich reservoirs 
in P4. 

Supplementary Table S7 presents the fine characterisa
tion for internal units in package 2. Compared to the units 
P2U1 and P2U3, P2U2 has lower gas saturation, gas con
tents and net shale thickness of 13.5 m. P2U3 has the highest 
porosity, gas saturation, total gas content and permeability 
correspond to the highest gas responses in mudlog gas pro
file (Supplementary Table S7, Fig. 7). The net shale thick
ness of P2U1 and P2U3 is 53.5 and 83.3 m, respectively. 

In P3, P3U1 and P3U3 units consist predominantly of 
micrite, marl and calcareous shale, while P3U2 and P3U4 
comprise mainly siltstone and claystone. The net shale thick
ness of P3U2 or P3U3 is insignificant (<2 m). P3U1 has 
thick organic-rich source rocks but lower gas saturation, free 
and total gas content, permeability and brittleness than 
P3U4 (Supplementary Table S8). The low gas saturation 
and free gas content in the organic-rich rocks in P3U1 and 
the limited net shale thickness of P3U2 and P3U3 corre
spond to the low gas responses in the mudlog gas profile 
(Fig. 7). P3U4 has favourable average gas saturation and 
free gas content with a net shale thickness of 35.9 m. 

Summary and conclusions 

Chemostratigraphic packages and internal units have been 
defined according to the variations and distributions of well 
logs, inorganic geochemical properties, mineral composi
tions and FIS parameters in the Proterozoic succession inter
sected by the deep stratigraphic drill hole NDI Carrara 1. 
ANNs have been used to interpret the mineral composition, 
porosity and permeability from well logs, integrating previ
ously interpreted and laboratory measurements of TOC con
tent, mineral composition, porosity and permeability as well 
as isotherm adsorption testing results. Total water satura
tion, total gas saturation and free gas content have been 
estimated using the interpreted total porosity and formation 
true resistivity in the TechlogTM platform. GCa is estimated 
from the contents of TOC and clay minerals through linear 
regression. The main results and conclusions are:  

• The first three principal components, particularly the first 
principal component, contributes to most of the total vari
ance. The PCA and SOM techniques are beneficial for 
defining internal chemostratigraphic units in the shale- 
rich packages.  

• Package 2 has the highest potential for future 
unconventional shale gas development among all the che
mostratigraphic packages analysed in this study. 

• P2U1 and P2U3 units have the most favourable petrophysi
cal properties for organic-rich shales among all the chemos
tratigraphic units. This includes elevated free, adsorbed and 
total gas contents as well as favourable permeability and 
brittleness, with a net shale thickness of 53.5 and 83.3 m, 
respectively, which are critical for shale gas development. 
P3U4 has favourable organic-rich shale, including high gas 
saturation and porosity; free, adsorbed and total gas con
tents; and favourable permeability and brittleness index. 
High gas responses in mudlog gas profile verify qualitatively 
the high hydrocarbon potential in the shale units of P2U1, 
P2U3 and P3U4. P3U1 has thick organic-rich source rocks 
with high interpreted adsorbed gas content but low free gas 
content, permeability and brittleness.  

• Besides the organic-rich shales, the tight non-organic-rich 
siltstone, clayey siltstone and shale gas reservoirs are 
represented in P1 with the interpreted gas saturation and 
permeability. 

Supplementary material 

Supplementary material is available online. 
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