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Payment and Policy

payments and evaluating appropriateness and effi-
ciency of services provided and has become an
important area of research for many countries
contemplating health system reform.

This paper examines the application of a risk-adjust-
ment method, extensively validated in the United
States, known as diagnostic cost groups (DCG), to a
large Australian hospital inpatient data set.
Abstract
Diagnosis-based risk adjustment is increasingly
seen as an important tool for establishing capitation

The data set encompassed hospital inpatient diag-
noses and inpatient expenditure for the entire met-
ropolitan population residing in the state of New
South Wales. The DCG model was able to explain
34% of individual-level variation in concurrent
expenditure and 5.2% in subsequent year expendi-
ture, which is comparable to US studies using
inpatient-only data. The degree of stability and
internal consistency of the parameter estimates for
both the concurrent and prospective models indi-
cate the DCG methodology has face validity in its
application to NSW health data sets. Modelling and
simulations were conducted which demonstrate the
policy applications and significance of risk adjust-
ment model(s) in the Australian context.

This study demonstrates the feasibility of using large
individual-level data sets for diagnosis-based risk
adjustment research in Australia. The results sug-
gest that a research agenda should be established
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to broaden the options for health system reform.

Risk adjustment and capitation
POLICY MAKERS THROUGHOUT most of the indust-
rialised world are grappling with ways to improve
the efficiency and equity of their health care systems,
to contain macro-level expenditure and to make
their health systems more innovative and responsive
to consumer preferences. To this end, risk adjust-
ment methods are increasingly being seen as an
important policy tool for both competitive and non-
competitive population-based health care systems.1

Risk adjustment accounts for differences in individ-
ual health risk and, hence, the expected health care
resource requirements of patients. Risk adjustment
can play an important role in establishing appropri-
ate funding levels and ensuring resource allocation
is made more equitable by being matched to the
health care needs of the population.1-4 It can also

What is known about the topic?
Since the mid 1990s, many European countries have 
engaged in extensive research into health-related 
risk adjustment methods utilising diagnostic 
information. Risk adjustment is seen as an important 
mechanism for establishing weighted prospective 
capitation payments for both competitive and non-
competitive health care systems and for evaluating 
the appropriateness and efficiency of services 
provided.
What does this paper add?
This is the first study using a large hospital data set 
for risk adjustment research in Australia. It shows the 
superiority of diagnosis-based risk adjustment 
methods over conventional approaches. The paper 
documents an improved method of assessing the 
efficiency of area health services, analysing 
capitated funding in a competitive environment and 
identifying high cost users for case management 
purposes.
What are the implications?
Diagnosis-based risk adjustment should be 
considered by policy makers at the federal level (for 
broadening health system reform options) and at a 
state level (for comparing area health services).   
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assist in the assessment of provider performance. If
the casemix adjustment is insensitive to differences
in health care status of patients, providers might be
penalised for treating sicker patients or be incor-
rectly assessed in terms of their relative efficiency in
treating such patients.5-7

Various methods have been used for predicting
resource requirements based on individual-level
health risk. To date, most attention has been given
to the development of models in which risk adjust-
ment is based upon diagnostic information.8 These
methods use diagnostic information obtained from
administrative data generated from patient
encounters with the health system. These data are
used to infer the patient’s medical problem and,
from this, their likely need for health services.4 A
substantial research agenda in the development
and implementation of diagnosis-based risk adjust-
ment methods has been under way in the United
States since the early 1980s and in European
countries since the mid 1990s.3,9

Although the purpose of risk adjustment is to
pursue efficiency and equity objectives, the aims
differ slightly depending on whether third-party
purchasers operate in a competitive or non-com-
petitive environment. In a competitive environ-
ment where health plans can compete for enrolees,
such as those in the Netherlands, Israel, Belgium
and the US Medicare system for example, effi-
ciency in the operation of the insurance markets is
of critical importance.8,10 A fundamental consider-
ation here is for risk adjustment to be used as the
basis of individual capitation rates, and accord-
ingly it must be able to explain variances in
predictable expenditures of the individual. A good
risk adjuster need not explain variances in expend-
iture associated with unpredictable or random
events, as conventional insurance and risk-sharing
arrangements are applied in such circumstances.
Inadequate risk-adjusted capitation payments cre-
ate incentives for health funds to exploit unpriced
heterogeneity by avoiding those individuals where
expected costs exceed what is paid and, conversely,
selecting those enrolees where payments exceed
expected costs. That is, there are perverse incen-
tives to select good risk and avoid bad risk (ie, risk
selection).

There is also growing interest in the use of
individual-level data in non-competitive health
systems, and research into the potential use of
risk adjustment is now taking place in countries
such as the UK, Canada and Spain.5-7 In these
countries, individual-level risk adjustment meth-
ods are seen as useful for devolving budgets down
to smaller and less well defined geographical
populations, such as primary care groups and
large general practices in the UK and regional
health areas in Canada, and for assessing effi-
ciency of primary health care clinics in Spain.
Consequently, methods of funding that accom-
modate variations in the health characteristics of
individual patients are increasingly needed for
equitable resource allocation across population
groups and for valid measurement of perform-
ance across health care providers.

Australia operates both a predominantly pub-
licly funded universal health insurance system
through Medicare, as well as a significantly subsi-
dised voluntary private insurance sector covering
45% of the population for private hospital care and
ancillary services. Risk adjustment methods have
potential relevance in the public health system for
establishing capitation funding (such as in New
South Wales area health services [AHS]) as well as
for monitoring the performance of provider net-
works who provide health services for large public
purchasers such as the Department of Veterans’
Affairs. Importantly also, risk adjustment methods
have significant relevance in the private health
insurance sector for establishing prospective
reinsurance arrangements in order to promote
incentives for efficiency while maintaining the
principles of community rating. The Australian
mix of financing and service provision has made
managed competition, a longer-term market-based
solution aimed at integrating private health insur-
ance into the universal framework of Medicare, a
viable option for reform and, consequently, risk
adjustment is of key importance.10-11

This paper reports on an exploratory inquiry
into the Australian application of a particular risk
adjustment method that has been extensively vali-
dated in the US, known as diagnostic cost groups
(DCGs), to a large Australian hospital inpatient
84 Australian Health Review February 2006 Vol 30 No 1
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data set. The study applies the risk adjustment
system software, known as DxCG, to individual-
level hospital inpatient diagnosis and expenditure
data. The database is the inpatient records for
1996–97 and 1997–98 for the metropolitan
regions of New South Wales.

The aims of the study were to assess the validity
of the DCG methodology in the Australian context;
determine the ability of the diagnostic method to
predict concurrent and subsequent year expendi-
ture; and explore the potential application and
policy implications of the risk adjustment models.
While there have been some previous studies12-13

in risk adjustment in Australia this is the first study
which has applied the method to a large Australian
data set. This enabled a more detailed analysis of
the robustness and internal consistency of param-
eter estimates and allowed for particular modelling
simulations to be performed in order to demon-
strate the policy importance of diagnosis-based
risk adjustment methods.

Methods
The DCG method begins by classifying the 15 000
ICD-9-CM (International Classification of Dis-
eases, Ninth Revision, Clinical Modification) codes
to one of 545 clinically similar categories known as
DxGroups. The 545 DxGroups are in turn clus-
tered into 118 condition categories (CCs) based on
clinical similarity and comparable expected costs.
The condition categories are organised into hierar-
chies (HCCs, or hierarchical coexisting conditions)
to ensure that only the most expensive of closely
related condition categories are assigned to an
individual. A full list of the HCC category names is
shown in the Appendix. The DCG/HCC system is
a multiple condition model and individuals there-
fore can have more than one HCC allocated to
them. The DCG risk adjustment model uses linear,
single equation, ordinary least squares (OLS)
regression methods to model expected health care
expenditures of individuals using demographic
and HCC (diagnosis-based) parameter estimates as
explanatory variables.

The data used in this analysis were provided by
the New South Wales health department (NSW

Health). The data set contains hospital inpatient
diagnosis and modelled inpatient expenditure
data linked at the individual level over 2 years for
the fiscal years 1996–97 and 1997–98. It includes
the entire population residing in the catchment
area of the nine metropolitan area health services
in New South Wales. The data set included all
episodes of public or private hospitalisation for a
population of 4 836 203 and 4 882 934 for the 2
years included in the study. In 1996–97, 831 666
individuals (17.3%) were hospitalised, and in
1997–98 there were 848 454 people (17.4%)
hospitalised. Costs for each hospitalisation were
estimated using data from the NSW Hospital
Comparison Data Book and the NSW Casemix
standards for 1999–2000. For acute care, actual
cost data were unavailable and costs were esti-
mated using casemix standards based on the
NSW Hospital Cost Study for 1997–98 and Ver-
sion 3.1 (Australian National) Diagnosis Related
Groups (DRGs). Costs for sub- and non-acute
separations were estimated on the basis of bed-
days using data provided in the NSW hospital
comparison data book — a benchmark costing
framework developed by NSW Health. Numbers
of non-treated patients residing in the metropoli-
tan AHS were determined by reference to the
Australian Bureau of Statistics census data.

A series of multivariable linear regressions were
constructed to predict concurrent and subsequent
year expenditures. Individual costs were explained
by a series of dummy variables for each individual’s
HCC. To validate the explanatory performance, a
split sample method, similar to that used in other
research studies, was used to establish model
structure and to assess and validate perform-
ance.3,14 The model is first fitted against a sample
population (ie, development sample) to establish
the model structure and estimate parameter coeffi-
cients. A validation process is then undertaken
whereby the model structure and coefficient esti-
mates derived from the development sample is
applied to the actual data of a second (ie, validated)
sample. The explanatory capability of the “out-of-
sample” fit in terms of R2 is assessed against the
original development sample. Finally, linear regres-
sion is used to determine parameter estimates for a
Australian Health Review February 2006 Vol 30 No 1 85
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combined model (ie, development and validated
sample sets) which then forms the basis upon
which subsequent predictive analysis is under-
taken. Various modelling and simulation exercises
were undertaken demonstrating particular policy
applications of the DCG model(s), and compari-
sons are made with age–sex and prior cost models
to highlight the importance of risk adjustment
methods in a policy context.

This study applied Release 5.1 DxCG software:
an inpatient multidiagnosis HCC/DCG model.
SAS version 8.2 (SAS Institute, Cary, NC, USA)
was used to perform all the analysis.

Results
Since the NSW data set only contains hospital
expenditures, the concurrent model was confined to
developing a casemix profile for the hospitalised-
only population. A development sample of 500000
patients was randomly selected from the hospital-
ised population of 831666 with the remaining
331336 people forming the second, or validated,
sample.

Concurrent data model
The explanatory performance of various alterna-
tive model structures is summarised in Box 1.
Before modifications, the development and sec-

ond sample were able to explain 31.7% and
29.0% of the variation in concurrent expenditure,
respectively. Several modifications were made to
the concurrent model. These included, first, trim-
ming expenditure to a per individual threshold of
$50 000 to limit the effects of extreme isolated
outliers. Secondly, some HCCs were combined
when they were unstable (across the two sample
sets) due to small population numbers (ie, HCC
040/041; 045/046; 089/090; 101/102; 105/106;
110/111). Thirdly, some HCCs were combined
when they had inconsistent cost-rank ordering
(HCC 006/007; 072/073; 074/075) Finally, age-
interaction terms were retrospectively introduced
for a child (ie, less than 18 years old) and for the
elderly (ie, greater that 64 years old) when there
were more than 1000 people in the cohort and
when the variable was statistically significant (at
99%). All other HCCs (including those coeffi-
cients that were statistically insignificant)
remained in the model unchanged.

Box 1 shows that the cumulative effects of these
three modifications led to some minor improve-
ment in model performance with the R2 for the
development and second sample increasing to
nearly identical figures of 0.345 and 0.339,
respectively. Trimming the per person inpatient
expenditure to $500 000 marginally increased the
R2. There were a very small number of individuals

1 Summary of model performance (R2) in explaining concurrent NSW hospital inpatient 
expenditures of metropolitan area health services, 1996–97

Development 
N=500000

Second sample 
N=331666

Cross 
validation

All hospitalised 
N=831666

Demographic-only model

Age–sex model* 0.039

DCG/HCC model

Not combined —no trim 0.317 0.290

$500k trim + combined HCC + age/interaction 0.345 0.339 0.338 0.342

Alternative expenditure trims

$250K trim + combined HCC + age/interaction 0.379

$100K trim + combined HCC + age/interaction 0.442

* The age–sex model is based on the entire data set of 831 666 hospitalised patients for 1996–97.
DCG = diagnostic cost group. HCC = hierarchical coexisting condition.
86 Australian Health Review February 2006 Vol 30 No 1
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whose expenditures exceeded the threshold (32
and 21 people for the development and second
sample set, respectively). Combining HCCs and
adding age interaction seems to have had a
negligible impact upon the explanatory capabili-
ties of the model. For comparative purposes, and
as expected, applying alternative expenditure
threshold trims of $250 000 and $100 000
improves the R2 to 0.379 and 0.442, respectively.

Validating the model structure by running the
estimated coefficients generated from the devel-
opment sample against the actual data in the
validated sample shows an R2 of 0.338 — a figure
very similar to both the development and second
sample sets, indicating consistent and valid fit of
model structure. As expected, the diagnosis-
based model is significantly better than the model
with age–sex only. Including the HCC variables
and other modifiers increases the R2 for the
combined data set of 831 666 from 0.039 to
0.342. The full model structure showing the
parameter estimates is presented in the Appendix.
Overall, the explanatory capabilities of the con-
current model are similar to US results when
using inpatient data.15

Prospective model
For the prospective model, given the absence of
other medical costs in the NSW data set, Year 1
inpatient diagnosis and demographic variables
are used to predict Year 2 inpatient costs rather
than total health costs. One difficulty this

presents is the extent of the relationship between
Year 1 diagnosis and Year 2 inpatient costs.
Specifically, many (Year 1) acute conditions may
not necessarily be good predictors of hospital
expenditures for the following year. For this
reason, a total of 35 HCCs from the original 118
HCC parameters were recommended for exclu-
sion by DxCG system developers, as these cat-
egories were considered to have no a priori
relationship with subsequent year hospitalisa-
tions (see Appendix for the 35 excluded HCCs).

Given potentially small population numbers for
some HCCs, a stratified random sample consist-
ing of 400 000 randomly selected hospitalised
patients, together with 600 000 randomly
selected non-hospitalised patients, from the
1996–97 data set was established for both the
development and second sample set. The strati-
fied development sample was then weighted in
accordance with the relative proportion of hospi-
talised to non-hospitalised mix as reflected in the
general population.

A summary of the explanatory performance of
the various model structures, the R2, is shown in
Box 2. Several modifications were made to the
model structure. First, as with the concurrent
model, individual-level expenditure was trimmed
to a threshold of $500 000 in order to reduce the
potential impact of large anomaly outliers. Sec-
ond, nine HCCs with negative coefficients gener-
ated by the development sample (ie, HCCs 003,
009, 021, 056, 058, 059, 074, 093, 113) were

2 Summary of model performance (R2) in explaining prospective NSW hospital in-
patient expenditures of metropolitan area health services for 1996–97 and 1997–98

Weighted
Development sample 

N=1000000
Second sample 

N=1000000 Cross validation
Combined sample 

N=2000000

Age–sex model 0.030

Prior cost 0.040

DCG/HCC model

Base model: $500K trim 0.052 0.052 0.052 0.052

$250K trim 0.054

$100K trim 0.062

DCG = diagnostic cost group. HCC = Hierarchical Coexisting Condition.
Australian Health Review February 2006 Vol 30 No 1 87
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constrained to zero. Finally, some of the unstable
HCCs with small population sizes and HCCs with
inconsistent cost-rank orderings were combined
(ie, HCCs 008–010; 013/014; 040/41; 045/046;
050/051; 065/066). Apart from the 35 HCCs that
were initially recommended for exclusion, all
HCC parameters that were statistically insignifi-
cant but had stable and positive coefficients were
retained in the model. Weighting the develop-
ment model, to reflect actual population hospital-
isation characteristics, the R2 for the basic model
structure for the development and second sample
was 0.052. The R2 for the cross-validation was
0.052 — a figure which is the same as both the
development and second model, demonstrating
general soundness in the underlying model struc-
ture. For the combined population model of 2
million individuals, the R2 for DCG/HCC models
is also 0.052. The explanatory capability of the
prospective model is also comparable with US
results using inpatient data. The parameter esti-
mates for the combined prospective model are
shown in the Appendix. The combined model
structure is used for modelling purposes which
are discussed later in the paper.

As expected, reducing the expenditure threshold
from $250 000 to $100 000 improves the R2 for the
weighted model from 0.054 to 0.062 respectively.
An interesting result is that the DCG/HCC model
has higher explanatory capabilities than the prior
cost model with the latter weighted model having
an R2 of 0.040. Box 2 also shows that the R2 for the
age–sex model was 0.030.

With regard to the parameter estimates gener-
ated by the HCC/DCG model presented in the
Appendix, the concurrent model demonstrated a
high degree of internal consistency and stability
in coefficients across the development and vali-
dated sample sets. There was strong internal
consistency, with nearly all higher cost HCCs
having higher estimated coefficients relative to
lower cost HCCs within the same hierarchical
category. Differences in parameter estimates
between two sample sets are attributable to small
population numbers. In both sample sets the
estimated coefficients remained highly stable
when they were subject to modifications, indicat-

ing that the model structure was robust. Applying
the Huber–White robust estimator to correct
standard errors for heteroscedasticity (to accom-
modate changing variances in the disturbance
term of the dependent variable) only 2 HCCs
were statistically insignificant but were retained
in the combined model structure.

The estimated coefficients generated by the
prospective model are shown in the Appendix.
They did not exhibit the same degree of stability
and internal consistency as the concurrent model.
However, this was not unexpected as the analysis
was confined to inpatient-only expenditure. In
addition to the a priori exclusion of 35 HCCs, an
additional 14 HCCs in the combined model
generated negative coefficients and had to be
constrained to zero, while a further set of 6 HCCs
were combined to maintain stability and cost
monotonicity. The parameter estimates across
both sample sets were stable when subject to
these modifications, again indicating a robust
model structure. Correcting standard errors using
the Huber–White robust estimator, 16 HCCs
were statistically insignificant but were retained
in the combined model structure. Despite the
limitations of the data set the prospective model
exhibited reasonable stability and internal con-
sistency and had demonstrably higher levels of
explanatory capabilities relative to both age–sex
and prior cost models.

Discussion
The findings from this study suggest that the
DCG methodology has validity in its application
to a large population health care data set in the
Australian context. The policy importance is that
the risk adjustment framework can be applied
either as a method for monitoring performance of
area health services, determining capitation-based
funding or for identifying high-cost users for case
management purposes.

Monitoring efficiency of area health 
services
An important application of the concurrent model
is to compare and explain differences in utilisation
88 Australian Health Review February 2006 Vol 30 No 1
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patterns across area health services once adjust-
ments have been made for health status. Box 3
shows a comparison between the mean actual
expenditures for hospitalised patients and mean
expected hospital expenditures based on the DCG/
HCC and age–sex concurrent model grouped by
the nine AHS regions in metropolitan New South
Wales. The relative index shown in Box 3 repre-
sents each region’s actual expenditure as a propor-
tion of the average state expenditure. For example,
the average actual expenditure for the hospitalised
population for AHS-A was 6% above the state
mean expenditure. The expected index shows the
expected expenditure in the respective models as a
proportion of the actual state average expenditure.
From this information, a regional efficiency index
can be calculated as the ratio of the actual to
expected expenditure. For example, based on the
DCG/HCC model the expected index for AHS-A
was 1.12, which implies that, given the utilisation
and age–sex profile of its population, the mean
hospital expenditure for that region was expected
to be 12% above the state average. However, since
the actual mean expenditure was only 6% above
the state mean expenditure, this implies that AHS-
A has an efficiency index of 0.95. That is, AHS-A is
5 percentage points more efficient than the state

average after adjusting for (diagnosis-based) health
status of its hospitalised population. The efficiency
indices for all the area health services based on
both the DCG model and an age–sex model are
shown in Box 3.

An interesting outcome shown in Box 3 is the
difference between the efficiency indices gener-
ated by the DCG/HCC and age–sex demographic
models. In particular, AHS-A has an efficiency
index of 0.95 according to the DCG/HCC model
and 1.05 according to the age–sex model predic-
tions. There is also a significant difference in the
efficiency index for AHS-G with the DCG/HCC
model indicating an efficiency index of 1.11
compared with an index of 1.04 for the demo-
graphic model. There are also some noticeable
differences for several other AHS regions which
would translate into non-trivial differences in the
budget allocation using the two algorithms.

Ostensibly, Box 3 represents the efficiency of a
region to manage its hospital costs for its hospital-
ised population. It would of course be desirable
to have medical costs incorporated into the analy-
sis so that the performance is based on the
regional health authorities’ ability to manage
overall patient costs including the effects of serv-
ices substitution.

3 Concurrent model: relative efficiency of metropolitan area health services (AHS) for 
hospitalised population for 1996–97 year: DCG/HCC model and age–sex model

AHS N Actual $
Relative 

index

DCG Age–sex only

Predicted $
Expected 

index
Efficiency 

index Predicted $
Expected 

index
Efficiency 

index

AHS-A 81 823 4341 1.06 4582 1.12 0.95 4147 1.02 1.05

AHS-B 129 504 4120 1.01 4199 1.03 0.98 4289 1.05 0.96

AHS-C 109 660 3792 0.93 3853 0.94 0.98 3824 0.94 0.99

AHS-D 50 264 3716 0.91 3608 0.88 1.03 3721 0.91 1.00

AHS-E 124 206 3618 0.89 3665 0.90 0.99 3788 0.93 0.96

AHS-F 52 417 4403 1.08 4626 1.13 0.95 4447 1.09 0.99

AHS-G 92 976 4295 1.05 3875 0.95 1.11 4133 1.01 1.04

AHS-H 58 138 4253 1.04 4230 1.04 1.01 4158 1.02 1.02

AHS-I 132 678 4346 1.06 4282 1.05 1.01 4251 1.04 1.02

All NSW 831 666 4081 1.00 4081 1.00 1.00 4081 1.00 1.00

DCG = diagnostic cost group. HCC = hierarchical coexisting condition.
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The important feature of the above analysis is
that variations in health status measures, even
when aggregated at a regional level, may not be
adequately captured by age–sex demographic
characteristics. Diagnosis-based risk adjustment
offers the potential for more refined measures of
casemix adjustment of population groups. The
policy implication here is that if the federal and
state governments engaged in systematic reform
and devolved a single stream of funding for health
care services down to area service boards, then
developing diagnosis-based risk adjustment
methods would be a more appropriate policy tool
for establishing the funding base and assessing
the relative efficiency of area health services.
Reliance on age–sex demographic methods
results in misleading assessment of the efficiency
of area health services.

Competing health insurers and risk 
selection
The importance of establishing adequate capita-
tion payments so as to minimise the risk-selection
incentives within a competitive environment,
such as in a managed competition framework or
for prospective reinsurance arrangements, is
demonstrated below. A simulation exercise was
conducted which treated the 9 AHS regions as
competing health plans which received two types
of capitated payments; one based on age–sex
model predictions, and the other on DCG/HCC
model predictions.  Each health plan is assumed
to risk-select patients based on prior cost model-
ling information. More specifically, each health
plan is assumed to risk-select patients when the
capitated payment received for an individual is
greater than their predicted costs based on the
prior cost information; and dump patients when
losses are predicted. Profit and losses are then
calculated by subtracting the actual costs incurred
by individuals after risk selection from the capita-
tion payments received by the plans.

Results reported in Box 4 show that when
health plans do not engage in risk selection total
profit across all 9 health plans sum to zero as total
capitated payments for age–sex and DCG/HCC
methods are both modelled to equal total actual

costs across the entire state. However if age–sex is
used as the basis for establishing capitated pay-
ments, and given zero transaction costs, health
plans on average will dump around 15.6% of
patients and profits totalled across the 9 health
plans will increase from zero to $130.5 million
(when extrapolated to the entire population of
4.8 million persons). Thus considerable incen-
tives for risk selection exist under age–sex capita-
tion payments (given our assumption that health
plans will utilise prior cost information, which is
superior to age–sex model predictions). However,
if capitation payments are based on DCG/HCC
model predictions, and given the relatively poorer
explanatory capabilities of the prior cost model,
the 9 health plans would risk incurring aggregate
losses totalling $28.8 million if they attempt to
risk-select based on the prior cost model. Risk
selection is thus a loss making strategy and health
plans would therefore be expected not to engage
in such activity and instead earn zero (ie, normal)
economic profits.

Box 4 also shows the extent of, and incentives
for, risk selection where there are alternative
transaction costs of $50 and $100 per person.
These scenarios recognise that person-dumping is
not costless.  As expected, the extent of risk
selection reduces with greater transaction costs of
dumping, but the incentives to risk-select are still

4 Simulated profits/losses based on age-
sex and DCG/HCC capitated payment 
methods utilising prior cost modelling 
information to risk select

Transaction 
costs per 
patient 

dumped

Age–sex capitation
HCC/DCG 
capitation

Risk-
selected

Total profit 
($millions)

Risk- 
selected

Total profit 
($ millions)

No risk
selection

0 $0 0 $0

$0 15.6% $130.5 64.1% –$28.8

$50 11.9% $133.0 12.2% –$126.4

$100 8.8% $146.2 9.2% –$109.0

DCG = diagnostic cost group. HCC = hierarchical coexisting 
condition.
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considerable. In the case of age–sex capitation,
total absolute profits increase with greater trans-
action costs since fewer people are dumped (ie,
more people are enrolled in total). If transaction
costs rise to sufficient levels risk selection will
eventually reduce to zero and normal economic
profits will be earned.

The above situation is of policy relevance for
the Commonwealth government which is cur-
rently developing age–sex related risk adjusters
for determining reinsurance arrangements for
health insurers (scheduled for introduction in
mid 2006). In order to underpin the community
rating principle while also trying to create incen-
tives for efficiency, health funds with “sicker”
population cohorts will be prospectively reim-
bursed on a capitated basis through reinsurance
arrangements based on the age–sex profile of
their enrolled population. However if the age–sex
capitated payments are inadequate to compensate
health funds for having a sicker patient cohort
then incentives exist to risk-select healthier
patients at the expense of the sicker population.
The simulation exercise presented shows quite
clearly the superiority of diagnosis-based risk-
adjusted capitated payments over age–sex related
casemix with respect to reducing the incentives
for risk selection and promoting efficient third-
party purchasing.

Similarly, if a managed competition model were
contemplated in Australia, developing adequate
risk adjusters is an essential prerequisite in order
to establish capitated payments and minimise
incentives for risk selection. As long as risk
adjusters can explain the predictable component
of the variation in individual-level expenditure at
least as well as methods utilised by health funds
then the incentives for risk selection are signifi-
cantly reduced.

Identifying high cost users
Another interesting application of the prospective
model is the ability to identify high cost users.
The task performed in this study was to use the
prospective DCG model, the prior cost model and
age–sex model to generate the 20 000 highest cost
users (ie, the highest 1%). Similar to other stud-

ies,16 a comparison is then made between the
three models by observing the degree of overlap
between the individuals predicted to be high cost
users by the respective models with the individ-
uals who actually were high cost users in Year 2.
Of the 20 000 individuals identified and pre-
dicted by the DCG/HCC model to be the highest
cost users, 3004 people (15%) matched the actual
20 000 highest cost individuals. The prior cost
and age–sex models were able to identify 2472
individuals (12.4%) and 1318 individuals
(6.6%), respectively, who were in the highest
20 000 actual users.

Box 5 reports another result for the highest
20 000 users predicted by both the prior cost and
DCG/HCC model. Interestingly, 6020 individuals
were predicted in common by the two models.
This represented about 30% of each model’s
20 000 highest cost users. However, this result
could be used to account for more of the overall
actual costs than the remaining 70% in both
models.

The combined use of prior cost and diagnostic
information has greater capabilities for identifying
people who will be expensive in the following
year. This conclusion is consistent with those
reported in other similar analyses.16

The policy implication is that diagnostic infor-
mation becomes an important tool for identifying
potentially high cost patients. Accordingly, early
identification and intervention through timely

5 Proportion of overall costs explained 
by the highest 20 000 individuals 
predicted by prior cost and DCG/HCC 
models, weighted for stratification

Model
No. of 
people

High cost 
users

Actual Year 2 
costs

DCG/HCC 
only

13 980 0.70% 2.2%

Both 6020 0.30% 2.0%

Prior cost 
only

13 980 0.70% 1.7%

DCG = diagnostic cost group. HCC = hierarchical coexisting 
condition.
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and coordinated care offers the potential to
improve health outcomes and also reduce health
expenditure. Reliance on only prior cost informa-
tion is a less robust method for determining high
cost patients than diagnosis-based methods.

Conclusion
Research into and the application of diagnosis-
based risk adjustment methods has been under
way in many European countries since the mid
1990s as part of the broader approach to health
care reform. Risk adjustment is increasingly being
seen as an important policy tool for establishing
prospective capitation payments for both compet-
itive and non-competitive third-party purchasing
health systems and to evaluate appropriateness
and efficiency of services provided.1-4

The degree of stability and internal consistency
of the estimated coefficients in the regression
results for both the concurrent and prospective
DCG/HCC models as well as the general explan-
atory performance comparable to similar overseas
studies indicate DCG methodology has face valid-
ity in its application to NSW Health data sets.
Findings from this exploratory study suggest that
further research into the validity and potential
usefulness of diagnosis-based risk adjustment
methods ought to be pursued. However, further
research into these methods, in the Australian
context, should involve data sets with linked
hospital and medical expenditure data. This will
permit a full exploration of the potential capabili-
ties associated with the use of individual-level
information. To this end, the federal government
has engaged in an exploratory initiative linking
state hospital clinical and expenditure data with
federal medical and pharmaceutical expenditure
data at the individual level. Importantly also,
information on prescription drugs has now
become available at the individual level. Combin-
ing hospital diagnostic information with pharma-
ceutical information in developing risk
adjustment models will permit research similar to
the work undertaken in Europe and the US.17-19

Models incorporating both inpatient and pharma-
ceutical information perform significantly better

than inpatient-only models and represent state-
of-the-art risk adjustment methodology in cir-
cumstances where out-of-hospital diagnostic
information is unavailable. However, notwith-
standing recent federal government initiatives,
the establishment of linked patient-level data is
still underdeveloped and priority needs to be
given to the area. A recently published paper
details how data linkage protocols in Australia
can be established and pursued in a more com-
prehensive way.20

Australia appears to be committed to a mixed
public–private federal–state system for the provi-
sion of health services, with the present system
reflecting a series of ad hoc policies over time.
This has led to a fragmented and uncoordinated
health system characterised by perverse incen-
tives such as cost-shifting between federal and
state government jurisdictions. Further, inherent
financial tensions between policies supporting
the voluntary private insurance sector and those
supporting the universal health system have not
been addressed since the introduction of Medi-
care, leading to perennial structural instability.21

It is also important to note that the Productivity
Commission in its recent review of the National
Competition Policy (NCP) specifically high-
lighted health care as a “prime candidate” for a
nationally coordinated approach to health system
reform and has called for a national independent
public inquiry into Australia’s health care system
akin to the Hilmer inquiry that preceded the
NCP.22

The development and use of individual-level
risk adjustment methods make possible the con-
sideration of reform options such as capitated
single fund-holding to area health authorities or
fund-holders; the development of prospective
reinsurance arrangements for health insurers; as
well as more encompassing competition-based
reforms, such as managed competition. Such
models could offer possible solutions to the
inherent problems currently confronting the Aus-
tralian health care system.1,11,23 This study dem-
onstrates the feasibility of utilising very large
individual-level linked data sets for risk adjust-
ment research in Australia, and the results pre-
92 Australian Health Review February 2006 Vol 30 No 1
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sented suggest that such a research agenda should
now be undertaken to underpin the options for
system reform.
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Appendix: Regression results of combined concurrent and prospective DCG/HCC models

Concurrent model 
(N=831666; R 2=0.342)

Prospective model 
(N=2000000; R 2 =0.052)

Parameters Estimate ($) P > |t| Estimate ($) P > |t|

Child Age: less than 18 403.88 <0.0001

Adult Age: 18–64 738.81 <0.0001

Elderly Age: 65+ 826.65 <0.0001

Female 0–5 226.17 <0.0001

Female 6–12 98.59 <0.0001

Female 13–17 170.25 <0.0001

Female 18–24 349.92 <0.0001

Female 25–34 566.86 <0.0001

Female 35–44 475.53 <0.0001

Female 45–54 531.19 <0.0001

Female 55–64 790.15 <0.0001

Female 65–74 1423.73 <0.0001

Female 75+ 2242.95 <0.0001

Male 0–5 306.07 <0.0001

Male 6–12 133.23 <0.0001

Male 13–17 171.86 <0.0001

Male 18–24 258.05 <0.0001

Male 25–34 273.35 <0.0001

Male 35–44 318.83 <0.0001

Male 45–54 515.58 <0.0001

Male 55–64 932.51 <0.0001

Male 65–74 1862.70 <0.0001

Male 75+ 2779.37 <0.0001

HCC001 HIV/AIDS 15 785.49 <0.0001 1920.63 <0.0001

HCC002 Septicemia (blood 
poisoning)/shock

8098.63 <0.0001 384.22 0.0574

HCC003 Central nervous system 
infections

5858.88 <0.0001 437.87 0.0907

HCC004 Other infectious disease 1245.62 <0.0001 99.92 <0.0001

HCC005 Metastatic cancer 6240.21 <0.0001 518.54 <0.0001

HCC006 C High cost cancer 6071.67 <0.0001 2858.01 <0.0001

HCC007 C Moderate cost cancer 6071.67 <0.0001 1800.28 <0.0001

HCC008 Low cost cancers/tumors 2394.45 <0.0001 – –
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Concurrent model 
(N=831666; R 2=0.342)

Prospective model 
(N=2000000; R 2 =0.052)

Parameters Estimate ($) P > |t| Estimate ($) P > |t|

HCC009 Carcinoma in situ 556.01 <0.0001 – –

HCC010 Uncertain neoplasm 1770.09 <0.0001 – –

HCC011 Skin cancer, except 
melanoma

997.36 <0.0001 X – –

HCC012 Benign neoplasm 568.70 <0.0001 X – –

HCC013 Diabetes with chronic 
complications

617.69 <0.0001 C 1002.28 <0.0001

HCC014 Diabetes with acute 
complications

1043.35 <0.0001 C 1002.28 <0.0001

HCC015 Diabetes with no or 
unspecified 
complications

221.76 <0.0001 167.79 0.002

HCC016 Protein–calorie 
malnutrition

1805.42 <0.0001 X – –

HCC017 Moderate cost endo/
metab/fluid–electrolyte

2238.47 <0.0001 – –

HCC018 Other endocrine, 
metabolic, nutritional

820.24 <0.0001 38.06 0.3019

HCC019 Liver disease 2303.81 <0.0001 1460.04 <0.0001

HCC020 High cost chronic 
gastrointestinal

1587.37 <0.0001 703.52 <0.0001

HCC021 High cost acute 
gastrointestinal

2602.76 <0.0001 – –

HCC022 Moderate cost 
gastrointestinal

1003.55 <0.0001 – –

HCC023 Low cost gastrointestinal 303.23 <0.0001 X – –

HCC024 Bone/joint infections/
necrosis

4743.52 <0.0001 774.74 0.0002

HCC025 Rheumatoid arthritis/
connective tissue

1627.47 <0.0001 533.61 <0.0001

HCC026 Other musculoskeletal/
connective tissue

1501.04 <0.0001 X – –

HCC027 Aplastic and acquired 
hemolytic anaemias

5993.86 <0.0001 4439.95 <0.0001

HCC028 Blood/immune disorders 3176.81 <0.0001 1066.76 <0.0001

HCC029 Iron deficiency and other 
anaemias

1125.85 <0.0001 257.09 <0.0001

HCC030 Dementia 890.81 <0.0001 X – –

HCC031 Drug/alcohol 
dependence/psychoses

2813.89 <0.0001 793.93 <0.0001

HCC032 Psychosis/higher cost 
mental

7461.13 <0.0001 1719.76 <0.0001

HCC033 Depression/moderate 
cost mental

1689.12 <0.0001 518.84 <0.0001

HCC034 Anxiety 2612.07 <0.0001 542.64 0.0068

Appendix, continued
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Concurrent model 
(N=831666; R 2=0.342)

Prospective model 
(N=2000000; R 2 =0.052)

Parameters Estimate ($) P > |t| Estimate ($) P > |t|

HCC035 Other mental and 
substance abuse

492.52 <0.0001 95.94 0.0265

HCC036–039 Mental retardation 1025.76 <0.0001 734.10 0.0464

HCC040 C Quadraplegia 10 851.01 <0.0001 C 4678.23 <0.0001

HCC041 C Paraplegia 10 851.01 <0.0001 C 4678.23 <0.0001

HCC042 High cost neurological 3755.33 <0.0001 776.90 <0.0001

HCC043 Moderate cost 
neurological

897.26 <0.0001 380.25 <0.0001

HCC044 Low cost neurological 549.51 <0.0001 X – –

HCC045 C Respiratory dependent/ 
tracheostomy 

12 033.47 <0.0001 C 1309.89 0.0268

HCC046 C Respiratory arrest 12 033.47 <0.0001 C 1309.89 0.0268

HCC047 Cardio-respiratory failure 
and shock

8412.59 <0.0001 513.44 0.0172

HCC048 Congestive heart failure 769.09 <0.0001 258.07 <0.0001

HCC049 Heart arrhythmia 1143.57 <0.0001 X – –

HCC050 Acute myocardial 
infarction

3966.48 <0.0001 C 23.84 0.6347

HCC051 Other acute ischemic 
heart disease

2417.31 <0.0001 C 23.84 0.6347

HCC052 Chronic ischemic heart 
disease

697.15 <0.0001 X – –

HCC053 Valvular and rheumatic 
heart disease

1847.98 <0.0001 182.12 0.0211

HCC054 Hypertensive heart 
disease

1588.51 <0.0001 828.07 0.2240

HCC055 Other heart diagnoses 246.52 0.2002 X – –

HCC056 Heart rhythm and 
conduction disorders

947.55 <0.0001 – –

HCC057 Hypertension (high 
blood pressure)

196.16 <0.0001 X – –

HCC058 High cost 
cerebrovascular disease

2965.45 <0.0001 – –

HCC059 Low cost 
cerebrovascular disease

1155.48 <0.0001 – –

HCC060 High cost vascular 
disease

3388.58 <0.0001 662.12 <0.0001

HCC061 Thromboembolic 
vascular disease

3654.58 <0.0001 326.84 0.0024

HCC062 Atherosclerosis 1807.90 0.0007 X – –

HCC063 Other circulatory disease 1199.18 <0.0001 – –

HCC064 Chronic obstructive 
pulmonary disease

1137.34 <0.0001 574.52 <0.0001

HCC065 High cost pneumonia 6756.96 <0.0001 C 131.89 0.4593

Appendix, continued
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Concurrent model 
(N=831666; R 2=0.342)

Prospective model 
(N=2000000; R 2 =0.052)

Parameters Estimate ($) P > |t| Estimate ($) P > |t|

HCC066 Moderate cost 
pneumonia

3931.56 <0.0001 C 131.89 0.4593

HCC067 Low cost pneumonia 2828.83 <0.0001 13.92 0.8391

HCC068 Pulmonary fibrosis/other 
chronic lung disease

1943.90 <0.0001 913.97 <0.0001

HCC069 Pleural effusion/
pneumothorax

3777.18 <0.0001 – –

HCC070 Asthma 88.81 <0.0001 102.28 <0.0001

HCC071 Other lung disease 2115.80 <0.0001 X – –

HCC072 C High cost eye 1145.41 <0.0001 X – –

HCC073 C Low cost eye 1145.41 <0.0001 X – –

HCC074 C High cost ear, nose and 
throat

584.27 <0.0001 X – –

HCC075 C Low cost ear, nose and 
throat

584.27 <0.0001 X – –

HCC076 Dialysis status 30515.07 <0.0001 21503.22 <0.0001

HCC077 Kidney transplant status 613.33 0.0394 2324.17 <0.0001

HCC078 Renal failure 2879.25 <0.0001 1102.08 <0.0001

HCC079 Nephritis 541.13 0.0021 439.54 0.0157

HCC080 Other urinary system 1092.71 <0.0001 X – –

HCC081 Female infertility 4451.42 <0.0001 628.53 <0.0001

HCC082 Moderate cost genital 987.59 <0.0001 X – –

HCC083 Low cost genital 304.68 <0.0001 X – –

HCC084 Ectopic pregnancy 858.71 0.0002 X – –

HCC085 Miscarriage/abortion 27.73 0.5846 X – –

HCC086 Completed pregnancy, 
major complications

3103.87 <0.0001 X – –

HCC087 Completed pregnancy, 
minor complications

1112.75 <0.0001 X – –

HCC088 Normal delivery 1401.31 <0.0001 X – –

HCC089 C High cost pregnancy w/o 
completion

219.71 0.0450 1188.17 <0.0001

HCC090 C Low cost pregnancy w/o 
completion

219.71 <0.0001 930.10 <0.0001

HCC091 Chronic ulcer of skin 4906.14 <0.0001 366.10 <0.0001

HCC092 Other dermatological 965.80 <0.0001 X – –

HCC093 Vertebral fractures/spinal 
cord injuries

3985.82 <0.0001 – –

HCC094 Hip fracture/dislocation 5417.12 <0.0001 X – –

HCC095 Head injuries 5362.25 <0.0001 X – –

HCC096 Drug poisoning/internal 
injury/trauma/
amputation/burns

1705.56 <0.0001 84.07 0.0414
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Concurrent model 
(N=831666; R 2=0.342)

Prospective model 
(N=2000000; R 2 =0.052)

Parameters Estimate ($) P > |t| Estimate ($) P > |t|

HCC097 Other injuries and 
poisonings

839.63 <0.0001 – –

HCC098 Complications of care 5856.91 <0.0001 237.57 0.2767

HCC099 Major symptoms 614.37 <0.0001 – –

HCC100 Minor symptoms, signs, 
findings

552.07 <0.0001 – –

HCC101 C Very high/high cost 
paediatric

7106.89 <0.0001 4298.97 <0.0001

HCC102 C High cost paediatric 7106.89 <0.0001 1423.02 <0.0001

HCC103 Moderate cost 
congenital

1236.75 <0.0001 644.93 <0.0001

HCC104 Low cost congenital 606.51 <0.0001 64.63 0.0473

HCC105 C Extremely/very low 
birthweight neonates

37 573.30 <0.0001 490.44 0.4249

HCC106 C Very low birthweight 
neonates

37 573.30 <0.0001 X – –

HCC107 Serious perinatal 
problem — newborn

2789.87 <0.0001 X – –

HCC108 Other perinatal problem 
affecting newborn

1209.08 <0.0001 X – –

HCC109 Normal, single birth 1175.30 <0.0001 X – –

HCC110 C Major organ transplant 
status

11 344.06 <0.0001 3807.39 <0.0001

HCC111 C Other organ transplant 
status

11 344.06 <0.0001 1185.10 0.0686

HCC112 Artificial opening status/
attention

4597.65 <0.0001 1618.03 <0.0001

HCC113 Elective/aftercare 1784.62 <0.0001 – –

HCC114 Radiation therapy 4192.68 <0.0001 X

HCC115 Chemotherapy 5222.20 <0.0001 3436.21 <0.0001

HCC116 Rehabilitation 5001.51 <0.0001 X – –

HCC117 Screening/observation/
special exams

950.64 <0.0001 – –

HCC118 History of disease 143.67 <0.0001 X – –

CHCC4 –459.45 <0.0001

EHCC4 330.18 <0.0001

CHCC17 –1067.30 <0.0001

EHCC17 –1938.58 <0.0001

CHCC23 531.03 <0.0001

EHCC35 706.57 <0.0001

EHCC43 –620.71 <0.0001

CHCC67 –1537.76 <0.0001
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Concurrent model 
(N=831666; R 2=0.342)

Prospective model 
(N=2000000; R 2 =0.052)

Parameters Estimate ($) P > |t| Estimate ($) P > |t|

EHCC67 –1129.80 <0.0001

EHCC71 –1057.66 <0.0001

EHCC80 –610.85 <0.0001

EHCC98 962.97 <0.0001

CHCC100 422.77 <0.0001

CHCC103 2115.11 <0.0001

EHCC113 –585.39 <0.0001

EHCC117 –921.64 <0.0001

CHCC118 662.24 <0.0001

DCG = diagnostic cost group. HCC = hierarchical coexisting condition.
The letter C denotes HCCs which have been combined
The letter X denotes the 35 HCCs that were originally recommended for exclusion from the prospective model by DxCG system 
developers. In addition to the excluded HCCs an additional 16 HCCs had negative coefficients which were subsequently constrained 
to zero.
Age interaction terms in the concurrent model are denoted as CHCC for children under 18 and EHCC for the elderly over 65 years 
followed by the numeric category consistent with the general HCC categories.
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