Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Genetic affinities among subspecies of a widespread Australian lycaenid butterfly, Ogyris amaryllis (Hewitson)

D. J. Schmidt A B and J. M. Hughes A
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Faculty of Environmental Sciences, Griffith University, Nathan, Qld 4111, Australia.

B Corresponding author. Email: d.schmidt@griffith.edu.au

Australian Journal of Zoology 54(6) 429-446 https://doi.org/10.1071/ZO06058
Submitted: 7 July 2006  Accepted: 16 November 2006   Published: 9 January 2007

Abstract

Genetic relationships among nominal subspecies of the lycaenid butterfly Ogyris amaryllis were investigated in eastern Australia. High levels of variation and population differentiation observed for allozyme markers were not consistent with subspecies boundaries. Partitioning of allozyme variation was explained better by arranging populations according to their larval host plant. Mitochondrial sequence data recovered a polyphyletic inland subspecies, with several peripheral subspecies showing reduced variation within this topology. Non-parametric topology tests rejected monophyly of the nominal subspecies and suggested that allopatric divergence is unlikely to account for the evolution of this complex. Genetic data, combined with information on distribution and ecology, are more consistent with a pattern of peripheral isolation associated with host-plant specialisation of coastal populations.


Acknowledgments

Funding was provided by Griffith University, the Australian Geographic Society and the Ecological Society of Australia. M. Braby, R. Weir and N. Pierce are thanked for generously providing samples for this study. A. Atkins, R. Eastwood, R. Manskie, P. Samson and P. Wilson provided useful information on collection localities and J. Moss brought information on new larval host plants to our attention. We are grateful to R. Eastwood, J. Ma, D. Hurwood and A. Schmidt for instruction and advice on laboratory procedures.


References

Aagaard, K. , Hindar, K. , Pullin, A. S. , James, C. H. , Hammarstedt, O. , Balstad, T. , and Hanssen, O. (2002). Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from north-western Europe. Biological Journal of the Linnean Society 75, 27–37.
Crossref | GoogleScholarGoogle Scholar | Akaike H. (1973). Information theory as an extension of maximum likelihood principle. In ‘Second International Symposium on Information Theory’. (Eds B. N. Petrov and F. Csake.) pp. 267–281. (Akademiai Kaido: Budapest.)

Aston, C. E. , and Dunn, K. L. (1985). Ants attendant on Ogyris amaryllis amata Waterhouse (Lepidoptera: Lycaenidae). Australian Entomological Magazine 12, 36.
Avise J. C. (2000). ‘Phylogeography: The History and Formation of Species.’ (Harvard University Press: Cambridge, MA.)

Ayala, F. , Tracey, M. L. , Hedgecock, D. , and Richmond, R. C. (1974). Genetic differentiation during the speciation process in Drosophila. Evolution 28, 576–592.
Crossref | GoogleScholarGoogle Scholar | Barlow B. A. (1984). Loranthaceae. In ‘Flora of Australia: Rhizophorales to Celastrales. Vol. 22’. (Ed. A. S. George.) pp. 68–131. (Bureau of Flora and Fauna, Australian Government Publishing Service: Canberra.)

Barraclough, T. G. , and Vogler, A. P. (2000). Detecting the geographical pattern of speciation from species-level phylogenies. American Naturalist 155, 419–434.
Crossref | GoogleScholarGoogle Scholar | PubMed | Braby M. F. (2000). ‘Butterflies of Australia: Their Identification, Biology and Distribution.’ (CSIRO Publishing: Melbourne.)

Buckley, T. R. (2002). Model misspecification and probabilistic tests of topology: evidence from empirical datasets. Evolution 51, 509–523..
Common I. F. B., and Waterhouse D. F. (1981). ‘Butterflies of Australia.’ Revised edn. (Angus and Robertson: Sydney.)

Corander, J. , Waldmann, P. , and Sillanpaa, M. J. (2003). Bayesian analysis of genetic differentiation between populations. Genetics 163, 367–374.
PubMed | Coyne J. A., and Orr H. A. (2004). ‘Speciation.’ (Sinauer Associates: Sunderland, MA.)

Crisp, M. , Cooke, L. , and Steane, D. (2004). Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present day communities? Philosophical Transaction of the Royal Society of London B 359, 1551–1571.
Crossref | GoogleScholarGoogle Scholar | Dobzhansky T. (1940). ‘Genetics and the Origin of Species.’ (Columbia University Press: New York.)

Doyle, J. J. , and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19, 11–15.
Eastwood R. G. (2006). Ant association and speciation in Lycaenidae (Lepidoptera): consequences of novel adaptations and Pleistocene climate changes. Ph.D. Thesis, Griffith University, Brisbane.

Eastwood, R. , and Fraser, A. M. (1999). Associations between lycaenid butterflies and ants in Australia. Australian Journal of Ecology 24, 503–537.
Crossref | GoogleScholarGoogle Scholar | Felsenstein J. (2002). ‘PHYLIP (Phylogeny Inference Package), Version 3.6a3.’ (Department of Genome Sciences, University of Washington: Seattle.)

Ferguson, D. J. (1983). Ogyris amaryllis amata Waterhouse (Lepidoptera: Lycaenidae) tended by Camponotus ants. Australian Entomological Magazine 10, 58.
Fiedler K. (1997). Life history patterns of myrmecophilous butterflies and other insects: their implications on tropical species diversity. In ‘Tropical Biodiversity and Systematics. Proceedings of the International Symposium on Biodiversity and Systematics in Tropical Ecosystems’. (Ed. H. Ulrich.) pp. 71–92. (Museum Alexander Koenig: Bonn.)

Folmer, O. , Black, M. , Hoeh, R. , Lutz, R. , and Vrijenhoek, R. (1994). DNA primers for the amplification of cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
PubMed | Mayr E. (1942). ‘Systematics and the Origin of Species.’ (Columbia University Press: New York.)

Mayr E. (1963). ‘Animal Species and Evolution.’ (Belknap Press: Cambridge, MA.)

Miller M. P. (1997). Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. (Computer software distributed by the author.)

Monteiro, A. , and Pierce, N. E. (2001). Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1 alpha gene sequences. Molecular Phylogenetics and Evolution 18, 264–281.
Crossref | GoogleScholarGoogle Scholar | PubMed | New T. (1999). The evolution and characteristics of the Australian butterfly fauna. In ‘Biology of Australian Butterflies. Monographs on Australian Lepidoptera. Vol. 6’. (Eds R. L. Kitching, E. Scheermeyer, R. E. Jones and N. E. Pierce.) pp. 33–52. (CSIRO Publishing: Melbourne.)

Nice, C. C. , and Shapiro, A. M. (1999). Molecular and morphological divergence in the butterfly genus Lycaeides (Lepidoptera: Lycaenidae) in north America: evidence of recent speciation. Journal of Evolutionary Biology 12, 936–950.
Crossref | GoogleScholarGoogle Scholar | Pierce N. E. (1984). Amplified species diversity: a case study of an Australian lycaenid butterfly and its attendant ants. In ‘The Biology of Butterflies’. (Eds R. I. Vane-Wright and P. R. Ackery.) pp. 197–200. (Academic Press: London.)

Pierce, N. E. , Braby, M. F. , Heath, A. , Lohman, D. J. , Mathew, J. , Rand, D. B. , and Travassos, M. A. (2002). The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology 47, 733–771.
Crossref | GoogleScholarGoogle Scholar | PubMed | Pritchard J. K., and Wen W. (2002). ‘Documentation for Structure Software, Version 2.0.’ (University of Chicago: Chicago.)

Pritchard, J. K. , Stephens, M. , and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
PubMed | Richardson B. J., Baverstock P. R., and Adams M. (1986). ‘Allozyme Electrophoresis. A Handbook for Animal Systematics and Population Studies.’ (Academic Press: Sydney.)

Ronquist, F. , and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | PubMed | Shattuck S. O. (1999). ‘Australian Ants: Their Biology and Identification.’ (CSIRO Publishing: Melbourne.)

Shimodaira, H. , and Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116.
Swofford D. L. (2002). ‘PAUP*: Phylogenetic Analysis using Parsimony (*and Other Methods).’ (Sinauer Associates: Sunderland, MA.)

Wahlberg, N. , Oliveira, R. , and Scott, J. A. (2003). Phylogenetic relationships of Phyciodes butterfly species (Lepidoptera: Nymphalidae): complex mtDNA variation and species delimitations. Systematic Entomology 28, 257–273.
Crossref | GoogleScholarGoogle Scholar |

Whinnett, A. , Zimmermann, M. , Willmott, K. R. , Herrera, N. , Mallarino, R. , Simpson, F. , Joron, M. , Lamas, G. , and Mallet, J. (2005). Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’. Proceedings of the Royal Society. Series B. Biological Sciences 272, 2525–2533.
Crossref | GoogleScholarGoogle Scholar |

Wilson, E. O. , and Brown, W. L. (1953). The subspecies concept and its taxonomic application. Systematic Zoology 2, 97–111.
Crossref | GoogleScholarGoogle Scholar |

Zakharov, E. V. , Caterino, M. S. , and Sperling, F. A. H. (2004). Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology 53, 193–215.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zink, R. M. (2004). The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 561–564.
Crossref | GoogleScholarGoogle Scholar |





Appendix 1.  Voucher specimen data and GenBank accession numbers for mitochondrial DNA sequences
GU, Griffith University; Molecular Ecology Laboratory Tissue collection; MCZ, Harvard University Museum of Comparative Zoology
Click to zoom



Appendix 2.  Allele frequency data for nine polymorphic allozyme loci in 13 populations of Ogyris amaryllis representing four nominal subspecies
Values in bold indicate major shift in the most common allele at a locus
Click to zoom



Appendix 3.  Ant genera found attending early stages of O. amaryllis subspecies
Click to zoom