Phylogenetics and phylogeography of a long-legged harvestman (Arachnida : Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity and extensive mitochondrial introgression
Cibele Bragagnolo A B E , Ricardo Pinto-da-Rocha B , Manuel AntunesA Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Arthur Riedel n° 275, 09972-270, Diadema, SP, Brazil.
B Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal: 11.461, 05422-970, São Paulo, SP, Brazil.
C American Museum of Natural History, Central Park West at 79th St, New York City, NY 10024, USA.
D Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd, Bioinformatics, Room 224, Charlotte, NC 28223, USA.
E Corresponding author. Email: cbragagnolo@unifesp.br
Invertebrate Systematics 29(4) 386-404 https://doi.org/10.1071/IS15009
Submitted: 11 March 2015 Accepted: 27 May 2015 Published: 28 August 2015
Abstract
We used DNA sequence data to test the morphology-based taxonomy and examine the biogeography of the Brazilian Atlantic Rain Forest genus Promitobates. Most species are well differentiated morphologically, and a previous morphological phylogeny recovered the genus as monophyletic. However, some of these species have overlapping geographical distributions and considerable intraspecific variation, perhaps representing a species complex. Mitochondrial (12S rRNA and COI) and nuclear (ITS2 and 28S) genes were sequenced from 132 specimens collected from 27 localities. The results are consistent with significant mitochondrial introgression among the species P. ornatus, P. hatschbachi, P. lager, P. bellus and P. intermedius (the ‘P. ornatus species complex’), with one specimen identified as a hybrid between P. nigripes and this complex. A phylogeographic study of the complex was conducted using mitochondrial haplotypes. This revealed remarkably poor dispersal among populations, with only one case of a shared haplotype, and very low genetic diversity. The phylogeny showed a clear break between populations on either side of a narrow region of forest, suggesting an important historical event separated these lineages in the genus. The analyses also pointed to population breaks that date back several millions of years or extremely small effective population sizes, depending on the mutation rate.
Additional keywords: Brazilian Atlantic forest, gene tree incongruence, Gonyleptidae, hybridisation, mitochondrial introgression.
References
Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C. A., Buggs, R., Butlin, R. K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S. H., Hermansen, J. S., Hewitt, G., Hudson, A. G., Jiggins, C., Jones, J., Keller, B., Marczewski, T., Mallet, J., Martinez-Rodriguez, P., Möst, M., Mullen, S., Nichols, R., Nolte, A. W., Parisod, C., Pfennig, K., Rice, A. M., Ritchie, M. G., Seifert, B., Smadja, C. M., Stelkens, R., Szymura, J. M., Väinölä, R., Wolf, J. B. W., and Zinner, D. (2013). Hybridization and speciation. Journal of Evolutionary Biology 26, 229–246.| Hybridization and speciation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3pvFKnug%3D%3D&md5=b3a918d404bbc030aa7af75dcfbd1616CAS | 23323997PubMed |
Almeida, F. F. M., and Carneiro, C. D. R. (1998). Origem e evolução da Serra do Mar. Revista Brasileira de Geociencias 28, 135–150.
Amaro, R. C., Rodrigues, M. T., Yonenaga-Yassuda, Y., and Carnaval, A. C. (2012). Demographic processes in the montane Atlantic rainforest: molecular and cytogenetic evidence from the endemic frog Proceratophrys boiei. Molecular Phylogenetics and Evolution 62, 880–888.
| Demographic processes in the montane Atlantic rainforest: molecular and cytogenetic evidence from the endemic frog Proceratophrys boiei.Crossref | GoogleScholarGoogle Scholar | 22108674PubMed |
Arango, C. P., and Wheeler, W. C. (2007). Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23, 255–293.
| Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology.Crossref | GoogleScholarGoogle Scholar |
Avise, J. C. (2000). ‘Phylogeography. The History and Formation of Species.’ (Harvard University Press: Cambridge, MA.)
Baker, J. M., Funch, P., and Giribet, G. (2007). Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion. Marine Biology 151, 2183–2193.
| Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion.Crossref | GoogleScholarGoogle Scholar |
Barton, N. H. (2001). The role of hybridization in evolution. Ecology 10, 551–568.
| 1:CAS:528:DC%2BD3MXjvFKgtbc%3D&md5=95ef879db5ea548c7f787020e5bc2c96CAS |
Barton, N. H. (2013). Does hybridization influence speciation? Journal of Evolutionary Biology 26, 267–269.
| Does hybridization influence speciation?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3pvFKmtg%3D%3D&md5=45e804ded83d15efffaf7010a56558dfCAS | 23324003PubMed |
Bikandi, J., San Millán, R., Rementeria, A., and Garaizar, J. (2004). In silico analysis of complete bacterial genomes: PCR, AFLP-PCR, and endonuclease restriction. Bioinformatics 20, 798–799.
| In silico analysis of complete bacterial genomes: PCR, AFLP-PCR, and endonuclease restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlyhsL8%3D&md5=a9177066a88fb10fb630571f93804a20CAS | 14752001PubMed |
Boyer, S. L., Baker, J. M., and Giribet, G. (2007). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
| Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy.Crossref | GoogleScholarGoogle Scholar | 17944852PubMed |
Bragagnolo, C., and Pinto-da-Rocha, R. (2009). Review of the Brazilian harvestman genus Roeweria Mello-Leitão, 1923 (Opiliones: Gonyleptidae). Zootaxa 2270, 39–52.
Bragagnolo, C., and Pinto-da-Rocha, R. (2012). Systematic review of Promitobates Roewer 1913 and cladistic analysis of Mitobatinae Simon 1879 (Arachnida, Opiliones, Gonyleptidae). Zootaxa 3308, 1–48.
Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., and Bremer, K. (2007). Estimating divergence times in large phylogenetic trees. Systematic Biology 56, 741–752.
| Estimating divergence times in large phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 17886144PubMed |
Burns, M., Hedin, M., and Shultz, J. W. (2012). Molecular phylogeny of the leiobunine harvestmen of eastern North America (Opiliones: Sclerosomatidae: Leiobuninae). Molecular Phylogenetics and Evolution 63, 291–298.
| Molecular phylogeny of the leiobunine harvestmen of eastern North America (Opiliones: Sclerosomatidae: Leiobuninae).Crossref | GoogleScholarGoogle Scholar | 22266183PubMed |
Cabanne, G., Santos, F. R., and Miyaki, C. Y. (2007). Phylogeography of Xiphorhynchus fuscus (Passeriformes: Dendrocolaptidae): vicariance and recent demographic expansion in the southern Atlantic forest. Biological Journal of the Linnean Society. Linnean Society of London 91, 73–84.
| Phylogeography of Xiphorhynchus fuscus (Passeriformes: Dendrocolaptidae): vicariance and recent demographic expansion in the southern Atlantic forest.Crossref | GoogleScholarGoogle Scholar |
Caetano, D. S., and Machado, G. (2013). The ecological tale of Gonyleptidae (Arachnida, Opiliones) evolution: phylogeny of a Neotropical lineage of armoured harvestmen using ecological, behavioural and chemical characters. Cladistics 29, 589–609.
| The ecological tale of Gonyleptidae (Arachnida, Opiliones) evolution: phylogeny of a Neotropical lineage of armoured harvestmen using ecological, behavioural and chemical characters.Crossref | GoogleScholarGoogle Scholar |
Chang, J., Song, D., and Zhou, K. (2007). Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution 42, 104–121.
| Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cgsb3F&md5=cd59fa74e8660bb100dd13d1859d2ff0CAS | 16905338PubMed |
Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews. Genetics 10, 195–205.
| Effective population size and patterns of molecular evolution and variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGlu7s%3D&md5=6d1a7d83853f41dc92c6c207b2e3f7c5CAS | 19204717PubMed |
Choleva, L., Musilova, Z., Kohoutova-Sediva, A., Paces, J., Rab, P., and Janko, K. (2014). Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS One 9, e80641.
| Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids.Crossref | GoogleScholarGoogle Scholar | 24971792PubMed |
Clouse, R. M., and Wheeler, W. C. (2014). Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates. Zootaxa 3814, 177–201.
| Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates.Crossref | GoogleScholarGoogle Scholar | 24943422PubMed |
Crandall, E. D., Jones, M. E., Munoz, M. M., Akinronbi, B., Erdmann, M. V., and Barber, P. H. (2008). Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle. Molecular Ecology 17, 5276–5290.
| Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle.Crossref | GoogleScholarGoogle Scholar | 19067797PubMed |
Croucher, P. J. P., Oxford, G. S., and Searle, J. B. (2004). Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae). Biological Journal of the Linnean Society. Linnean Society of London 81, 79–89.
| Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae).Crossref | GoogleScholarGoogle Scholar |
Croucher, P. J. P., Jones, R. M., Searle, J. B., and Oxford, G. S. (2007). Contrasting patterns of hybridization in large house spiders (Tegenaria atrica group, Agelenidae). Evolution 61, 1622–1640.
| Contrasting patterns of hybridization in large house spiders (Tegenaria atrica group, Agelenidae).Crossref | GoogleScholarGoogle Scholar |
Cui, R., Schumer, M., Kruesi, K., Walter, R., Andolfatto, P., and Rosenthal, G. G. (2013). Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution 67, 2166–2179.
| Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes.Crossref | GoogleScholarGoogle Scholar | 23888843PubMed |
DaSilva, M. B., and Gnaspini, P. (2010). A systematic revision of Goniosomatinae (Arachnida: Opiliones: Gonyleptidae), with a cladistic analysis and biogeographical notes. Invertebrate Systematics 23, 530–624.
| A systematic revision of Goniosomatinae (Arachnida: Opiliones: Gonyleptidae), with a cladistic analysis and biogeographical notes.Crossref | GoogleScholarGoogle Scholar |
DaSilva, M. B., and Pinto-da-Rocha, R. (2010). Systematic review and cladistic analysis of the Hernandariinae. Zoologia 27, 577–642.
| Systematic review and cladistic analysis of the Hernandariinae.Crossref | GoogleScholarGoogle Scholar |
DaSilva, M. B., and Pinto-da-Rocha, R. (2011). História Biogeográfica da Mata Atlântica: Opiliões (Arachnida) como Modelo para sua inferência. In ‘Biogeografia da América do Sul, Padrões e Processos’. (Eds C. J. B. Carvalho and E.A.B. Almeida.) pp. 221–239. (São Paulo, Roca.)
DaSilva, M. B., Pinto-da-Rocha, R., and DeSouza, A. (2015). A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic rain forest using harvestmen distribution data. Cladistics , .
| A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic rain forest using harvestmen distribution data.Crossref | GoogleScholarGoogle Scholar |
De Ley, P., Felix, M. A., Frisse, L. M., Nadler, S. A., Sternberg, P. W., and Thomas, W. K. (1999). Molecular and morphological characterisation of two reproductively isolated species with mirror image anatomy (Nematoda: Cephalobidae). Nematology 1, 591–612.
| Molecular and morphological characterisation of two reproductively isolated species with mirror image anatomy (Nematoda: Cephalobidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslagsQ%3D%3D&md5=0ac9bdbb45765e2854ab31fed8b2ec4dCAS |
Degnan, J. H., and Rosenberg, N. A. (2006). Discordance of species trees with their most likely gene trees. PLOS Genetics 2, e68.
| Discordance of species trees with their most likely gene trees.Crossref | GoogleScholarGoogle Scholar | 16733550PubMed |
Degnan, J. H., and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference, and the multispecies coalescent. Trends in Ecology & Evolution 24, 332–340.
| Gene tree discordance, phylogenetic inference, and the multispecies coalescent.Crossref | GoogleScholarGoogle Scholar |
Di Candia, M. R., and Routman, E. J. (2007). Cytonuclear discordance across a leopard frog contact zone. Molecular Phylogenetics and Evolution 45, 564–575.
| Cytonuclear discordance across a leopard frog contact zone.Crossref | GoogleScholarGoogle Scholar | 17689987PubMed |
Edgecombe, G. D., and Giribet, G. (2006). A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate Systematics 20, 503–525.
| A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda).Crossref | GoogleScholarGoogle Scholar |
Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? Evolution 63, 1–19.
| Is a new and general theory of molecular systematics emerging?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKgtbs%3D&md5=df6c6f055df8d183508555702a247b78CAS | 19146594PubMed |
Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using Phred II. Error probabilities. Genome Research 8, 186–194.
| Base-calling of automated sequencer traces using Phred II. Error probabilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWlu7g%3D&md5=42b94ee406d99382937a4b231d82c53cCAS | 9521922PubMed |
Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998). Base-calling of automated sequencer traces using Phred I. Accuracy assessment. Genome Research 8, 175–185.
| Base-calling of automated sequencer traces using Phred I. Accuracy assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWlu78%3D&md5=c827005a23fc486bd94a9a8337f55192CAS | 9521921PubMed |
Fitzpatrick, S. W., Brasileiro, C. A., Haddad, C. F. B., and Zamudio, K. R. (2009). Geographical variation in genetic structure of an Atlantic Coastal Forest frog reveals regional differences in habitat stability. Molecular Ecology 18, 2877–2896.
| Geographical variation in genetic structure of an Atlantic Coastal Forest frog reveals regional differences in habitat stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFehsr8%3D&md5=cc9c9990d5ae9edd2df8c050a3cada68CAS | 19500257PubMed |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=c84f72a2d796a7fee91c4e2e01175599CAS | 7881515PubMed |
González, M. A., Eberhard, J. R., Lovette, I. J., Olson, S. L., and Bermingham, E. (2003). Mitochondrial DNA phylogeography of the bay wren (Troglodytidae: Thryothorus nigricapillus). The Condor 105, 228–238.
| Mitochondrial DNA phylogeography of the bay wren (Troglodytidae: Thryothorus nigricapillus).Crossref | GoogleScholarGoogle Scholar |
Gordon, D., Abajian, C., and Green, P. (1998). Consed: a graphical tool for sequence finishing. Genome Research 8, 195–202.
| Consed: a graphical tool for sequence finishing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWksr0%3D&md5=e8a6376fdebd1a7c515f9fe39b6a5601CAS | 9521923PubMed |
Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221–224.
| SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGgtw%3D%3D&md5=c304ddec8dc70ec022d83c416f685011CAS | 19854763PubMed |
Guillot, G., Mortier, F., and Estoup, A. (2005). Geneland: a computer package for landscape genetics. Molecular Ecology 5, 712–715.
| Geneland: a computer package for landscape genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhurvN&md5=72ef52cf19db1e20d5dd3056c797672aCAS |
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium 41, 95–98.
Hamilton, C. A., Formanowicz, D. R., and Bond, J. E. (2011). Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS One 6, e26207.
| Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSgsbjI&md5=05845edb7e01a27d69dcae2ac6035746CAS | 22022570PubMed |
Harrison, R. G., and Larson, E. L. (2014). Hybridization, introgression, and the nature of species boundaries. The Journal of Heredity 105, 795–809.
| Hybridization, introgression, and the nature of species boundaries.Crossref | GoogleScholarGoogle Scholar | 25149255PubMed |
Hedin, M., and Lowder, M. C. (2009). Phylogeography of the Habronattus amicus species complex (Araneae: Salticidae) of western North America, with evidence for localized asymmetrical mitochondrial introgression. Zootaxa 2307, 39–60.
Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
| A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=269ae178510d5ccbf65ffed910e1b58fCAS | 11277632PubMed |
Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 33, 511–518.
Kury, A. B. (2003). Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones). Revista Iberica Aracnologia Volumen Especial 1, 1–337.
Kury, A. B., and Villarreal, O. (2015). The prickly blade mapped: establishing homologies and a chaetotaxy for macrosetae of penis ventral plate in Gonyleptoidea (Arachnida, Opiliones, Laniatores). Zoological Journal of the Linnean Society , .
| The prickly blade mapped: establishing homologies and a chaetotaxy for macrosetae of penis ventral plate in Gonyleptoidea (Arachnida, Opiliones, Laniatores).Crossref | GoogleScholarGoogle Scholar |
Lane, N. (2009). On the origin of bar codes. Nature 462, 272–274.
| On the origin of bar codes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVeqsbbE&md5=246babdbf78ff3525031aa9e69e48cb0CAS | 19924185PubMed |
Lattimore, V. L., Vink, C. J., Paterson, A. M., and Cruickshank, R. H. (2011). Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand. Invertebrate Systematics 25, 70–79.
| Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand.Crossref | GoogleScholarGoogle Scholar |
Leppänen, J., Vepsalainen, K., and Savolainen, R. (2011). Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecology and Evolution 1, 46–62.
| Phylogeography of the ant Myrmica rubra and its inquiline social parasite.Crossref | GoogleScholarGoogle Scholar | 22393482PubMed |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=cdfb8c35061b6117a309c7e7542f0dc0CAS | 19346325PubMed |
Machado, G., and Macías-Ordóñez, R. (2007). Reproduction. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 414–454. (Harvard University Press: Cambridge, MA.)
Mallet, J. (2007). Hybrid speciation. Nature 446, 279–283.
| Hybrid speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVSnsL0%3D&md5=c48bb9fe2cfdb3206cd6c63b071d5506CAS | 17361174PubMed |
Mallet, J. (2008). Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 2971–2986.
| Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation.Crossref | GoogleScholarGoogle Scholar | 18579473PubMed |
Martins, F. M., Meyer, D., Ditchfield, A. D., and Morgante, J. M. (2007). Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae). Journal of Zoological Systematics and Evolutionary Research 45, 372–378.
| Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae).Crossref | GoogleScholarGoogle Scholar |
Mayr, E. (1942). ‘Systematics and the Origin of Species.’ (Columbia University Press: New York, NY.)
Mestre, L. A. M., and Pinto-da-Rocha, R. (2004). Population dynamics of an isolated population of the harvestman Ilhaia cuspidata (Opiliones, Gonyleptidae) in Araucaria forest (Curitiba, Paraná, Brazil). The Journal of Arachnology 32, 208–220.
| Population dynamics of an isolated population of the harvestman Ilhaia cuspidata (Opiliones, Gonyleptidae) in Araucaria forest (Curitiba, Paraná, Brazil).Crossref | GoogleScholarGoogle Scholar |
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). ‘Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees.’ (Gateway Computing Environments Workshop (GCE): New Orleans, LA.)
Nevado, B., Koblmller, S., Sturmbauer, C., Snoeks, J., and Usano-Alemany, J. (2009). Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Molecular Ecology 18, 4240–4255.
| Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyqs7fF&md5=81e88b489107bef622249eb876865f8eCAS | 19780975PubMed |
Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology 6, 288–295.
| GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |
Pérez-Portela, R., Arranz, V., Rius, M., and Turon, X. (2013). Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports 3, 1–10.
Petit, R. J., and Excoffier, L. (2009). Gene flow and species delimitation. Trends in Ecology & Evolution 24, 386–393.
| Gene flow and species delimitation.Crossref | GoogleScholarGoogle Scholar |
Pinto-da-Rocha, R. (2002). Systematic review and cladistic analysis of the Caelopyginae (Opiliones, Gonyleptidae). Arquivos de Zoologia 36, 357–464.
Pinto-da-Rocha, R., and Bragagnolo, C. (2010a). Systematic revision and cladistic analysis of the Brazilian subfamily Sodreaninae (Opiliones: Gonyleptidae). Invertebrate Systematics 24, 509–538.
| Systematic revision and cladistic analysis of the Brazilian subfamily Sodreaninae (Opiliones: Gonyleptidae).Crossref | GoogleScholarGoogle Scholar |
Pinto-da-Rocha, R., and Bragagnolo, C. (2010b). Review of the Brazilian Atlantic Rainforest harvestman Longiperna (Opiliones: Gonyleptidae: Mitobatinae). Zoologia 27, 993–1007.
| Review of the Brazilian Atlantic Rainforest harvestman Longiperna (Opiliones: Gonyleptidae: Mitobatinae).Crossref | GoogleScholarGoogle Scholar |
Pinto-da-Rocha, R., Machado, G., and Giribet, G. (2007). ‘Harvestmen. The Biology of Opiliones.’ (Harvard University Press: Cambridge, MA.)
Pinto-da-Rocha, R., Bragagnolo, C., Marques, F. P. L., and Antunes Junior, M. (2014). Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones). Cladistics 30, 519–539.
| Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
| jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=ca0a10d07e6e1e3343dbe4441b3f8a36CAS | 18397919PubMed |
Prendini, L., Weygoldt, P., and Wheeler, W. C. (2005). Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms, Diversity & Evolution 5, 203–236.
| Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA.Crossref | GoogleScholarGoogle Scholar |
Reyda, F. B., and Olson, P. D. (2003). Cestodes of Peruvian freshwater stingrays. The Journal of Parasitology 89, 1018–1024.
| Cestodes of Peruvian freshwater stingrays.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srkslOitg%3D%3D&md5=4613af2c2767510813da982ac557791cCAS | 14627150PubMed |
Riccomini, C., Grohmann, C. H., Sant’Anna, L. G., and Hiruma, S. T. (2010). A captura das cabeceiras do Rio Tietê pelo Rio Paraíba do Sul. In: ‘A Obra de Aziz Nacib Ab’Sáber’. (Eds M. C. Modenesi-Gauttieri, A. Bartorelli, V. Mantesso-Neto, C. D. R. Carneiro and M. B. A. L. Lisboa.) pp. 157–169. (Becca: São Paulo, Brazil.)
Ripplinger, J., and Sullivan, J. (2008). Does choice in model selection affect maximum likelihood analysis? Systematic Biology 57, 76–85.
| Does choice in model selection affect maximum likelihood analysis?Crossref | GoogleScholarGoogle Scholar | 18275003PubMed |
Rosenberg, N. A. (2002). The probability of topological concordance of gene trees and species trees. Theoretical Population Biology 61, 225–247.
| The probability of topological concordance of gene trees and species trees.Crossref | GoogleScholarGoogle Scholar | 11969392PubMed |
Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution 19, 198–207.
| Hybridization and adaptive radiation.Crossref | GoogleScholarGoogle Scholar |
Segraves, K. A., and Pellmyr, O. (2001). Phylogeography of the yucca moth Tegeticula maculate: the role of historical biogeography in reconciling high genetic structure with limited speciation. Molecular Ecology 10, 1247–1253.
| Phylogeography of the yucca moth Tegeticula maculate: the role of historical biogeography in reconciling high genetic structure with limited speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKiur0%3D&md5=5687ec73f0c9ab2ca1dc1ae966d37b25CAS | 11380881PubMed |
Sharma, P. P., and Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25, 106–145.
| The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida).Crossref | GoogleScholarGoogle Scholar |
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |
Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57–86.
Varón, A., Vinh, L. S., and Wheeler, W. C. (2010). POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 26, 72–85.
| POY version 4: phylogenetic analysis using dynamic homologies.Crossref | GoogleScholarGoogle Scholar |
Wheeler, W. C. (2003). Iterative pass optimization of sequence data. Cladistics 19, 254–260.
| Iterative pass optimization of sequence data.Crossref | GoogleScholarGoogle Scholar | 12901382PubMed |
Willemart, R. H., and Gnaspini, P. (2004). Spatial distribution, mobility, gregariousness, and defensive behavior in the Brazilian cave harvestman Goniosoma albiscriptum (Arachnida, Opiliones, Laniatores). Animal Biology 54, 221–235.
| Spatial distribution, mobility, gregariousness, and defensive behavior in the Brazilian cave harvestman Goniosoma albiscriptum (Arachnida, Opiliones, Laniatores).Crossref | GoogleScholarGoogle Scholar |
Willemart, R. H., Osses, F., Chelini, M. C., Macías-Ordóñez, R. R., and Machado, G. (2009). Sexually dimorphic legs in a neotropical harvestman (Arachnida, Opiliones): ornament or weapon? Behavioural Processes 80, 51–59.
| Sexually dimorphic legs in a neotropical harvestman (Arachnida, Opiliones): ornament or weapon?Crossref | GoogleScholarGoogle Scholar | 18929628PubMed |
Yamaguti, H., and Pinto-da-Rocha, R. (2009). Taxonomic review of Bourguyiinae, cladistic analysis, and a new hypothesis of biogeographic relationships of the Brazilian Atlantic Rainforest (Arachnida: Opiliones, Gonyleptidae). Zoological Journal of the Linnean Society of London 156, 319–362.
Yang, Z., and Nielsen, R. (1998). Synonymous and nonsynonymous rate variation in nuclear genes of mammals. Journal of Molecular Evolution 46, 409–418.
| Synonymous and nonsynonymous rate variation in nuclear genes of mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlSgu7w%3D&md5=b0f8211287f6a0f6debd43453250cd1fCAS | 9541535PubMed |
Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., Pang, X., Xu, H., Zhu, Y., Xiao, P., and Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 5, e13102.
| Use of ITS2 region as the universal DNA barcode for plants and animals.Crossref | GoogleScholarGoogle Scholar | 20957043PubMed |
Zatz, C. (2010). Seleção sexual e evolução do dimorfismo sexual em duas espécies de opiliões (Arachnida: Opiliones). Master’s Thesis, Instituto de Biociências, Universidade de São Paulo, Brazil.
Zatz, C., Werneck, R. M., Macías-Ordóñez, R., and Machado, G. (2011). Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones). Behavioral Ecology and Sociobiology 65, 995–1005.
| Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |