Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterization of Three New Emissive Mononuclear CuI Heteroleptic Complexes with Functionalized 6-Cyano-2,2′-bipyridine Chelating Ligands

Wan-Man Wang https://orcid.org/0000-0003-1477-8713 A C , Peng Ju A , Man-Hong Jing B , Ping Yu A and Qin Huang A
+ Author Affiliations
- Author Affiliations

A School of Science and School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

B No. 3 Senior Middle School in Tongwei, Tongwei 743300, China.

C Corresponding author. Email: wanmanwang@126.com

Australian Journal of Chemistry 73(7) 640-646 https://doi.org/10.1071/CH19560
Submitted: 28 October 2019  Accepted: 9 January 2020   Published: 27 February 2020

Abstract

A new series of luminescent mononuclear CuI complexes with functionalized 6-cyano-2,2′-bipyridine chelating ligands, [Cu(xantphos)(cbpy)]ClO4 (1), [Cu(xantphos)(4,4’-Me2cbpy)]ClO4·CH2Cl2·H2O (2), and [Cu(POP)(cbpy)]ClO4·CH2Cl2 (3) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; POP = bis(2-diphenylphosphinophenyl)ether; 4,4’-Me2cbpy = 4,4’-dimethyl-6-cyano-2,2′-bipyridine; cbpy = 6-cyano-2,2′-bipyridine) have been successfully prepared, and their structures and photophysical properties are investigated. Single crystal structures of the three complexes reveal a distorted tetrahedral coordination geometry around the CuI centres with the P atoms of diphosphane ligands and N donors of 2,2′-bipyridine ring. Luminescence measurements indicate that these CuI complexes display good emission properties both in the solution and solid states at room temperature, which can be well modulated through modifying the structure of 6-cyano-2,2′-bipyridine. It is shown that the introduction of two electron-donating methyl groups at the 4,4’-positions of the 6-cyano-2,2′-bipyridine is favourable to enhance the luminescence properties of the CuI complexes.


References

[1]  C. Zeng, N. Wang, T. Peng, S. N. Wang, Inorg. Chem. 2017, 56, 1616.
         | Crossref | GoogleScholarGoogle Scholar | 28071056PubMed |

[2]  C. M. Brown, V. Carta, M. O. Wolf, Chem. Mater. 2018, 30, 5786.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Q. Zhang, J. Chen, X. Y. Wu, X. L. Chen, R. M. Yu, C. Z. Lu, Dalton Trans. 2015, 44, 6706.
         | Crossref | GoogleScholarGoogle Scholar | 25784048PubMed |

[4]  R. Czerwieniec, M. J. Leitl, H. H. H. Homeier, H. Yersin, Coord. Chem. Rev. 2016, 325, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y. H. Sun, V. Lemaur, J. I. Beltran, J. Cornil, J. W. Huang, J. T. Zhu, Y. Wang, R. Frohlich, H. B. Wang, L. Jiang, G. F. Zou, Inorg. Chem. 2016, 55, 5845.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. L. Chen, Z. H. Guo, Y. S. Luo, L. Qiu, L. H. He, S. J. Liu, H. R. Wen, J. Y. Wang, New J. Chem. 2016, 40, 5325.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  D. M. Zink, T. Grab, T. Baumann, M. Nieger, E. C. Barnes, W. Klopper, S. Bräse, Organometallics 2011, 30, 3275.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. D. Weber, C. Garino, G. Volpi, E. Casamassa, M. Milanesio, C. Barolo, R. D. Costa, Dalton Trans. 2016, 45, 8984.
         | Crossref | GoogleScholarGoogle Scholar | 27160065PubMed |

[9]  G. X. Jin, J. P. Ma, C. Z. Sun, Y. B. Dong, Aust. J. Chem. 2015, 68, 307.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  F. L. Zhang, Y. Q. Guan, X. L. Chen, S. S. Wang, D. Liang, Y. F. Feng, S. F. Chen, S. Z. Li, Z. Y. Li, F. Q. Zhang, C. Z. Lu, G. X. Cao, B. Zhai, Inorg. Chem. 2017, 56, 3742.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Hasegawa, A. Kobayashi, H. Ohara, M. Yoshida, M. Kato, Inorg. Chem. 2017, 56, 4928.
         | Crossref | GoogleScholarGoogle Scholar | 28394567PubMed |

[12]  C. Bravo, M. P. Robalo, F. Marques, A. R. Fernandes, D. A. Sequeira, M. F. M. Piedade, M. H. Garcia, M. J. V. de Brito, T. S. Morais, New J. Chem. 2019, 43, 12308.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  D. M. Zink, M. Bachle, T. Baumann, M. Nieger, M. Kuhn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Brase, Inorg. Chem. 2013, 52, 2292.
         | Crossref | GoogleScholarGoogle Scholar | 23061380PubMed |

[14]  F. Brunner, S. Graber, Y. Baumgartner, D. Haussinger, A. Prescimone, E. C. Constable, C. E. Housecroft, Dalton Trans. 2017, 46, 6379.
         | Crossref | GoogleScholarGoogle Scholar | 28466927PubMed |

[15]  Y. S. Luo, X. H. Zeng, W. M. Wang, J. L. Chen, L. H. He, M. L. Zhang, S. J. Liu, H. R. Wen, Chem. Res. Chin. Univ. 2018, 34, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  R. D. Costa, D. Tordera, E. Ortí, H. J. Bolink, J. Schönle, S. Graber, C. E. Housecroft, E. C. Constable, J. A. Zampese, J. Mater. Chem. 2011, 21, 16108.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. G. Crestani, G. F. Manbeck, W. W. Brennessel, T. M. McCormick, R. Eisenberg, Inorg. Chem. 2011, 50, 7172.
         | Crossref | GoogleScholarGoogle Scholar | 21714488PubMed |

[18]  S. Keller, A. Pertegás, G. Longo, L. Martínez, J. Cerdá, J. M. Junquera-Hernández, A. Prescimone, E. C. Constable, C. E. Housecroft, E. Ortí, H. J. Bolink, J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 3857.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Femoni, S. Muzzioli, A. Palazzi, S. Stagni, S. Zacchini, F. Monti, G. Accorsi, M. Bolognesi, N. Armaroli, M. Massi, G. Valenti, M. Marcaccio, Dalton Trans. 2013, 42, 997.
         | Crossref | GoogleScholarGoogle Scholar | 23108182PubMed |

[20]  L. Bergmann, C. Braun, M. Nieger, S. Brase, Dalton Trans. 2018, 47, 608.
         | Crossref | GoogleScholarGoogle Scholar | 29239440PubMed |

[21]  M. D. Weber, M. Viciano-Chumillas, D. Armentano, J. Cano, R. D. Costa, Dalton Trans. 2017, 46, 6312.
         | Crossref | GoogleScholarGoogle Scholar | 28452386PubMed |

[22]  J. Yuasa, M. Dan, T. Kawai, Dalton Trans. 2013, 42, 16096.
         | Crossref | GoogleScholarGoogle Scholar | 23996045PubMed |

[23]  Q. Zhang, X. L. Chen, J. Chen, X. Y. Wu, R. M. Yu, C. Z. Lu, RSC Adv. 2015, 5, 34424.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. L. Chen, X. H. Zeng, Y. S. Luo, W. M. Wang, L. H. He, S. J. Liu, H. R. Wen, S. P. Huang, L. Liu, W. Y. Wong, Dalton Trans. 2017, 46, 13077.
         | Crossref | GoogleScholarGoogle Scholar | 28944389PubMed |

[25]  S. M. Tong, D. L. Yuan, L. T. Yi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 280.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. M. Zhang, B. Li, Z. M. Su, J. Phys. Chem. C 2009, 113, 13968.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. H. Jia, X. L. Chen, J. Z. Liao, D. Liang, M. X. Yang, R. M. Yu, C. Z. Lu, Dalton Trans. 2019, 48, 1418.
         | Crossref | GoogleScholarGoogle Scholar | 30628618PubMed |

[28]  M. T. Buckner, D. R. McMillin, J. Chem. Soc. Chem. Commun. 1978, 17, 759.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  R. A. Rader, D. R. McMillin, M. T. Buckner, T. G. Matthews, D. J. Casadonte, R. K. Lengel, S. B. Whittaker, L. M. Darmon, F. E. Lytle, J. Am. Chem. Soc. 1981, 103, 5906.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 2011, 133, 10348.
         | Crossref | GoogleScholarGoogle Scholar | 21591664PubMed |

[31]  L. L. Hu, C. Shen, W. K. Chu, J. Xiang, F. Yu, G. Xiang, Y. Nie, C. L. Kwok, C. F. Leung, C. C. Ko, Polyhedron 2017, 127, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. Lin, D. H. Chen, R. M. Yu, X. L. Chen, W. J. Zhu, D. Liang, J. F. Chang, Q. Zhang, C. Z. Lu, J. Mater. Chem. C Mater. Opt. Electron. Devices 2017, 5, 4495.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. Mondal, I. B. Lozada, R. L. Davis, J. A. G. Williams, D. E. Herbert, J. Mater. Chem. C Mater. Opt. Electron. Devices 2019, 7, 3772.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  S. Keller, M. Bantle, A. Prescimone, E. C. Constable, C. E. Housecroft, Molecules 2019, 24, 3934.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, N. Robertson, Inorg. Chem. 2014, 53, 10854.
         | Crossref | GoogleScholarGoogle Scholar | 25054425PubMed |

[36]  Y. Shi, X. Liu, Y. Y. Shan, X. Zhang, W. B. Kong, Y. N. Lu, Z. D. Tan, X. L. Li, Dalton Trans. 2019, 48, 2430.
         | Crossref | GoogleScholarGoogle Scholar | 30688965PubMed |

[37]  Q. Zhang, X. L. Chen, J. Chen, X. Y. Wu, R. M. Yu, C. Z. Lu, Dalton Trans. 2015, 44, 10022.
         | Crossref | GoogleScholarGoogle Scholar | 25948065PubMed |

[38]  S. Keller, E. C. Constable, C. E. Housecroft, M. Neuburger, A. Prescimone, G. Longo, A. Pertegas, M. Sessolo, H. J. Bolink, Dalton Trans. 2014, 43, 16593.
         | Crossref | GoogleScholarGoogle Scholar | 25294297PubMed |

[39]  J. L. Chen, X. F. Cao, W. Gu, B. T. Su, F. Zhang, H. R. Wen, R. J. Hong, Inorg. Chem. Commun. 2012, 15, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  D. Das, K. Biradha, Aust. J. Chem. 2019, 72, 742.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |