Supramolecular Assemblies of Cucurbit[10]uril Based on Outer Surface Interactions
Yu-Qing Yao A , Qing Liu A , Ying Huang A , Qian-Jiang Zhu A , Yun-Qian Zhang A , Xin Xiao A , Zhu Tao A C and Gang Wei B CA Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
B CSIRO Manufacturing PO Box 218, Lindfield, NSW 2070, Australia.
C Corresponding authors. Email: gzutao@263.net; gang.wei@csiro.au
Australian Journal of Chemistry 70(5) 637-641 https://doi.org/10.1071/CH16552
Submitted: 30 September 2016 Accepted: 23 November 2016 Published: 16 December 2016
Abstract
Using an established method, we isolated a large quantity of cucurbit[10]uril (Q[10]) and prepared Q[10]-based supramolecular assemblies via different approaches. For example, the structure-directing agent [CdCl4]2– was used or the Q[10] molecule itself acted as a self-structure-directing agent to form different Q[10]-based supramolecular assemblies through the outer surface interaction of Q[10]. Generally, the Q[10]-based supramolecular assemblies possess porous features that suggest that Q[n]-based compounds could be used to manufacture molecular sieves and sensors and applied in absorption and separation technologies.
References
[1] H. Cong, X. L. Ni, X. Xiao, Y. Huang, Q. J. Zhu, S. F. Xue, Z. Tao, L. F. Lindoy, G. Wei, Org. Biomol. Chem. 2016, 14, 4335.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVaktbk%3D&md5=79ad67b4b34f64a287e80d2982419ac9CAS |
[2] W. L. Mock, Top. Curr. Chem. 1995, 175, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVCksbw%3D&md5=3a08dae558e8c830bcfb004f676ca06eCAS |
[3] J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, K. Kim, Acc. Chem. Res. 2003, 36, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFCnt7s%3D&md5=03db234f43f50f2ce9d1050093f61843CAS |
[4] K. Kim, Chem. Soc. Rev. 2002, 31, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFyjtrs%3D&md5=f55b5ebd8844a10a6b28b4d1f362576aCAS |
[5] J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem., Int. Ed. 2005, 44, 4844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCntbc%3D&md5=fdb4ae3a322522ab30c7c3170e940ed8CAS |
[6] K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev. 2007, 36, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKltbw%3D&md5=7896b23fa181b52361afa02722955aedCAS |
[7] L. Isaacs, Chem. Commun. 2009, 2009, 619.
| Crossref | GoogleScholarGoogle Scholar |
[8] R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymsr%2FI&md5=0223a1fbfbe07d930e81c46d31958fcdCAS |
[9] B. C. Pemberton, R. Raghunathan, S. Volla, J. Sivaguru, Chem. – Eur. J. 2012, 18, 12178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12js7%2FK&md5=51461a9a7df9452e60a5ecef0c32fce1CAS |
[10] E. Masson, X. X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Y. Lu, RSC Adv. 2012, 2, 1213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKks74%3D&md5=37eacd24d3cdde5f5a8434e363fc2e1fCAS |
[11] Y. L. Liu, H. Yang, Z. Q. Wang, X. Zhang, Chem. – Asian J. 2013, 8, 1626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFahur8%3D&md5=dff361d09dbe8192f9aeb57670fc54c3CAS |
[12] V. Sindelar, S. Silvi, S. E. Parker, D. Sobransingh, A. E. Kaifer, Adv. Funct. Mater. 2007, 17, 694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVKkt7s%3D&md5=4f0f54d25feae097641ff58e3f9565b6CAS |
[13] W. Wang, A. E. Kaifer, Adv. Polym. Sci. 2009, 222, 1.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Gadde, E. K. Batchelor, A. E. Kaifer, Aust. J. Chem. 2010, 63, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagtrw%3D&md5=de1f501eb9ff4ce2966ae1fe9ae593dfCAS |
[15] S. Gadde, A. E. Kaifer, Curr. Org. Chem. 2011, 15, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslaitr8%3D&md5=f6fb23a3daf54dfcaeb728843457d09bCAS |
[16] V. Mandadapu, A. I. Day, A. Ghanem, Chirality 2014, 26, 712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVers7%2FI&md5=838f12b3b4da1ad30a12400e25a2c7c7CAS |
[17] V. Montes-García, J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, Chem. – Eur. J. 2014, 20, 10874.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Isaacs, Acc. Chem. Res. 2014, 47, 2052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlKgurs%3D&md5=0516c288f85f6831d9a32fea600bca53CAS |
[19] K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGisrbN&md5=ab46a6d5fddda1b8e00ef11da057653aCAS |
[20] M. N. Sokolov, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull. 2003, 52, 1041.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVarsrk%3D&md5=0906560ef1962eb32685f34af81cc8c7CAS |
[21] O. A. Gerasko, M. N. Sokolov, V. P. Fedin, Pure Appl. Chem. 2004, 76, 1633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVyrtbg%3D&md5=c2e155734c067c0cf0dd1a2731ec23b6CAS |
[22] V. P. Fedin, Russ. J. Coord. Chem. 2004, 30, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1agtbs%3D&md5=bfb595de342cc5b9263a78f8b2ee71baCAS |
[23] J. Lü, J. X. Lin, M. N. Cao, R. Cao, Coord. Chem. Rev. 2013, 257, 1334.
| Crossref | GoogleScholarGoogle Scholar |
[24] X. L. Ni, X. Xiao, H. Cong, L. L. Liang, K. Chen, X. J. Cheng, N. N. Ji, Q. J. Zhu, S. F. Xue, Z. Tao, Chem. Soc. Rev. 2013, 42, 9480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVShsb7M&md5=7d01726e05ca23bdc7f31cc0f7b70e31CAS |
[25] X. L. Ni, S. F. Xue, Z. Tao, Q. J. Zhu, L. F. Lindoy, G. Wei, Coord. Chem. Rev. 2015, 287, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovFWjtg%3D%3D&md5=c5072362fd093bd9de0a7bfbce61f88cCAS |
[26] X. L. Ni, X. Xiao, H. Cong, Q. J. Zhu, S. F. Xue, Z. Tao, Acc. Chem. Res. 2014, 47, 1386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFaqs7w%3D&md5=50e211adbff80d1059d674cd8fb61b87CAS |
[27] I. Hwang, W. S. Jeon, H. J. Kim, D. Kim, H. Kim, N. Selvapalam, N. Fujita, S. Shinkai, K. Kim, Angew. Chem., Int. Ed. 2007, 46, 210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlGiuw%3D%3D&md5=b9ff290145fe2a8e1d33f0c30e7cb7e9CAS |
[28] S. Lim, H. Kim, N. Selvapalam, K. J. Kim, S. J. Cho, G. Seo, K. Kim, Angew. Chem., Int. Ed. 2008, 47, 3352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlWqsrY%3D&md5=6dbb69e99a47018b4e5ef860e649e210CAS |
[29] H. Kim, Y. Kim, M. Yoon, S. Lim, S. M. Park, G. Seo, K. Kim, J. Am. Chem. Soc. 2010, 132, 12200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCns7nO&md5=dfdb3310b1d5ca95be445a51f8aba8c5CAS |
[30] M. Yoon, K. Suh, H. Kim, Y. Kim, N. Selvapalam, K. Kim, Angew. Chem., Int. Ed. 2011, 50, 7870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFygs7s%3D&md5=7b2409aab7076b6636ba7e3803180fa3CAS |
[31] X. J. Cheng, L. L. Liang, K. Chen, N. N. Ji, X. Xiao, J. X. Zhang, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, X. L. Ni, Z. Tao, Angew. Chem., Int. Ed. 2013, 52, 7252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVeqsbk%3D&md5=b3e1139d6d15ae63b738cba204d479f0CAS |
[32] Q. Li, S. C. Qiu, J. Zhang, K. Chen, Y. Huang, X. Xiao, Y. Zhang, F. Li, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, Z. Tao, L. F. Lindoy, G. Wei, Org. Lett. 2016, 18, 4020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlSht7jM&md5=ff091e243533ac0cd786b87b55359f25CAS |
[33] A. I. Day, R. J. Blanch, A. P. Arnold, S. Lorenzo, G. R. Lewis, I. Dance, Angew. Chem., Int. Ed. 2002, 41, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVyisbY%3D&md5=917029105052fb665b4e60eabdbbeb19CAS |
[34] M. J. Pisani, Y. Zhao, L. Wallace, C. E. Woodward, F. R. Keene, A. I. Day, J. G. Collins, Dalton Trans. 2010, 39, 2078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslCjtbs%3D&md5=48e110e541a1d53d19ed02e729b8c2f4CAS |
[35] S. Liu, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 16798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2htrbE&md5=6001e8988b378704c99dff2699f3b924CAS |
[36] S. Liu, X. Yang, W. Gong, Chinese Patent CN 104557951 2015.
[37] S. Liu, P. Y. Zavalij, Y. F. Lam, L. Isaacs, J. Am. Chem. Soc. 2007, 129, 11232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVejs7s%3D&md5=a3cc9cb69110ab13431b126f540a22d3CAS |
[38] J. X. Liu, R. L. Lin, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. Commun. 2008, 11, 1085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKrtrzP&md5=ed05f4a1c2d0bbcdf6da83db1a9f974cCAS |
[39] S. Liu, A. D. Shukla, S. Gadde, B. D. Wagner, A. E. Kaifer, L. Isaacs, Angew. Chem., Int. Ed. 2008, 47, 2657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFaqtbk%3D&md5=f575d903875d480cf7990434c1c9f404CAS |
[40] F. Li, M. Feterl, J. M. Warner, A. I. Day, F. R. Keene, J. G. Collins, Dalton Trans. 2013, 42, 8868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1emt7Y%3D&md5=4b99d8fb680bd23a588d9d3c592feb71CAS |
[41] L. R. Alrawashdeh, A. I. Day, L. Wallace, Dalton Trans. 2013, 42, 16478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsLzN&md5=77e846731d1a3f8e6ea4cabd4bad38a3CAS |
[42] L. R. Alrawashdeh, M. P. Cronin, C. E. Woodward, A. I. Day, L. Wallace, Inorg. Chem. 2016, 55, 6759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvFGis74%3D&md5=be25f4f54d55a09ef7ae32c1eade9d29CAS |
[43] A. I. Day, A. P. Arnold, R. J. Blanch, PCT Int. Appl. WO2000–2000AU412 20000505, 112 (Priority: AU 99–232 19990507) 2000 (Unisearch Limited: Australia).
[44] J. Kim, I. S. Jung, S. Y. Kim, E. J. Lee, K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Gjtw%3D%3D&md5=02172d95c7a429aa2a1463c231a49bceCAS |
[45] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=1965db3178cb384357dbea613ab9f64bCAS |
[46] G. M. Sheldrick, SHELXL-97 Program for the Solution and Refinement of Crystal structures 1997 (University of Göttingen, Germany).
[47] D. Bardelang, K. A. Udachin, D. M. Leek, J. A. Ripmeester, CrystEngComm 2007, 9, 973.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtleqtbzK&md5=b4b586fccebb0ca35875005beb2e0774CAS |
[48] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 2008 (Utrecht University: Utrecht, The Netherlands).