Development of the Claisen Rearrangement/Organocatalytic Diels-Alder Approach for the Synthesis of Eunicellins*
Joel F. Hooper A B , Jonathan M. White A and Andrew B. Holmes AA School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
B Corresponding author. Email: joel.hooper@unimelb.edu.au
Australian Journal of Chemistry 67(9) 1189-1194 https://doi.org/10.1071/CH14030
Submitted: 22 January 2014 Accepted: 1 March 2014 Published: 12 May 2014
Abstract
The intramolecular Diels-Alder approach to synthesizing eunicellins has proved to be a powerful method for the synthesis of this class of natural products. The key to the success of this strategy is control over the endo/exo selectivity of the cycloaddition reaction, which we have addressed through an organocatalytic reaction employing the MacMillan imidazolidinone catalyst. This approach has been further developed to address the issue of functionality at the C8 position, and a novel scalable method for the extension of the medium-ring lactone has been developed.
References
[1] O. Kennard, D. G. Watson, L. Riva di Sanseverino, B. Tursch, R. Bosmans, C. Djerassi, Tetrahedron Lett. 1968, 24, 2879.| Crossref | GoogleScholarGoogle Scholar |
[2] (a) P. Bernardelli, L. A. Paquette, Heterocycles 1998, 49, 531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlSksg%3D%3D&md5=4beaeb24cee9201e6cc4866e967b66f7CAS |
(b) P. J. Sung, M. C. Chen, Heterocycles 2002, 57, 1705.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. D. Rodríguez, O. M. Cobar, Tetrahedron 1995, 51, 6869.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. B. Stierle, B. Carte, D. J. Faulkner, B. Tagle, J. Clardy, J. Am. Chem. Soc. 1980, 102, 5088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltlaltr4%3D&md5=af6b6a265809ef50399e80fa02f23910CAS |
[5] M. D’Ambrosio, A. Guerriero, F. Pietra, Helv. Chim. Acta 1987, 70, 2019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1yrs70%3D&md5=f66a9dfd58948280d23e6ee187fc0482CAS |
[6] J. M. Ellis, M. T. Crimmins, Chem. Rev. 2008, 108, 5278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ors73N&md5=3eaef5b50f3c387a8f1c287b84c15e27CAS | 18942794PubMed |
[7] (a) D. W. C. MacMillan, L. E. Overman, J. Am. Chem. Soc. 1995, 117, 10391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1ert70%3D&md5=ef170d0fea1ce14543fdb3b069cbd075CAS |
(b) O. Corminboeuf, L. E. Overman, L. D. Pennington, J. Am. Chem. Soc. 2003, 125, 6650.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. Corminboeuf, L. E. Overman, L. D. Pennington, Org. Lett. 2003, 5, 1543.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Joe, L. E. Overman, Tetrahedron Lett. 1997, 38, 8635.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) L. A. Paquette, O. M. Moradei, P. Bernardelli, T. Lange, Org. Lett. 2000, 2, 1875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslGlu78%3D&md5=1911c84bcf83f43bd8b32fea3ac06da6CAS | 10891180PubMed |
(b) D. Friedrich, R. W. Doskotch, L. A. Paquette, Org. Lett. 2000, 2, 1879.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) G. A. Molander, S. C. Jeffrey, Tetrahedron Lett. 2002, 43, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12g&md5=37f0d52d0e10eda4d7b9e5f29f4abeccCAS |
(b) G. A. Molander, D. J. St. Jean, J. Haas, J. Am. Chem. Soc. 2004, 126, 1642.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Becker, K. Bergander, R. Froehlich, D. Hoppe, Angew. Chem. Int. Ed. 2008, 47, 1654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1KrtLo%3D&md5=f67ebddb41820c2fdaa23712fac8a661CAS |
[11] (a) Y. Chai, D. A. Vicic, M. C. McIntosh, Org. Lett. 2003, 5, 1039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslynsb0%3D&md5=ab994297b659111096133e3e4d7e9b68CAS | 12659568PubMed |
(b) M. Nowakowski, H. M. R. Hoffmann, Tetrahedron 1997, 53, 4331.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) J. S. Clark, L. J. Winfield, C. Wilson, A. J. Blake, Synlett 2006, 2191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWntb3O&md5=ae1bbf64ddff49b657dacf85cad09c04CAS |
(b) J. S. Clark, S. T. Hayes, C. Wilson, L. Gobbi, Angew. Chem. Int. Ed. 2007, 46, 437.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. S. Clark, R. Berger, S. T. Hayes, L. H. Thomas, A. J. Morrison, L. Gobbi, Angew. Chem. Int. Ed. 2000, 51, 9867.
(d) J. S. Clark, R. Berger, S. T. Hayes, H. M. Senn, L. J. Farrugia, L. H. Thomas, A. J. Morrison, L. Gobbi, J. Org. Chem. 2013, 78, 673.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. T. Crimmins, B. H. Brown, J. Am. Chem. Soc. 2004, 126, 10264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeju7o%3D&md5=1444d9a7ba21f97b4532bf9356ba95edCAS | 15315437PubMed |
(b) M. T. Crimmins, J. M. Ellis, J. Am. Chem. Soc. 2005, 127, 17200.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. T. Crimmins, B. H. Brown, H. R. Plake, J. Am. Chem. Soc. 2006, 128, 1371.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. T. Crimmins, M. C. Mans, A. D. Rodriguez, Org. Lett. 2010, 12, 5028.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. T. Crimmins, C. S. Stauffer, M. C. Mans, Org. Lett. 2011, 13, 4890.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) H. Kim, W. A. Choi, J. Jung, S. Kim, D. Kim, J. Am. Chem. Soc. 2003, 125, 10238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVGhtb4%3D&md5=94fb9a07ef0f6572879d1126489f3d28CAS | 12926946PubMed |
(b) H. Kim, H. Lee, J. Kim, S. Kim, D. Kim, J. Am. Chem. Soc. 2006, 128, 15851.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. E. P. Davidson, R. Gilmour, S. Ducki, J. E. Davies, R. Green, J. W. Burton, A. B. Holmes, Synlett 2004, 1434.
| 1:CAS:528:DC%2BD2cXlslaqtL4%3D&md5=af6d5fd1eeee6af83bbdf6d98131d800CAS |
[16] R. Gilmour, T. J. Prior, J. W. Burton, A. B. Holmes, Chem. Commun. 2007, 3954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyjtrvL&md5=0f9fc2e27b4a11b12ec6bb705372e215CAS |
[17] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVGjurw%3D&md5=1ffb040dcbc4adf3464680eabfdd31b5CAS |
[18] A. B. C. Simas, G. Stork, J. Braz. Chem. Soc. 1996, 7, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFCru7c%3D&md5=756fcff8f29be394951e34520d5bdb2bCAS |
[19] E. A. Anderson, J. E. P. Davidson, J. R. Harrison, P. T. O’Sullivan, J. W. Burton, I. Collins, A. B. Holmes, Tetrahedron 2002, 58, 1943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFSjtrg%3D&md5=1d900127368ef4b525e8a060666f1135CAS |
[20] M. S. Congreve, A. B. Holmes, A. B. Hughes, M. G. Looney, J. Am. Chem. Soc. 1993, 115, 5815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslSrurk%3D&md5=22337764d2bf3c49cbd32d66d43f8ef5CAS |
[21] K. C. Nicolaou, G. Q. Shi, J. L. Gunzner, P. Gaertner, Z. Yang, J. Am. Chem. Soc. 1997, 119, 5467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGgsr4%3D&md5=4ad4af29772b25ebf74055c5b65aa7fbCAS |
[22] M. Norley, P. Kocienski, A. Faller, Synlett 1996, 900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1yiu7c%3D&md5=44e12702a084f396387a8fbfcd64b90cCAS |
[23] M. Sundermeier, A. Zapf, S. Mutyala, W. Baumann, J. Sans, S. Weiss, M. Beller, Chem. Eur. J. 2003, 9, 1828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Gmtbo%3D&md5=b436fa1660a66c97cabc0ed883618ab1CAS | 12698441PubMed |
[24] (a) G. H. Lee, I. K. Youn, E. B. Choi, H. K. Lee, G. H. Yon, H. C. Yang, C. S. Pak, Curr. Org. Chem. 2004, 8, 1263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslajsLs%3D&md5=f6b232849f99d0113000e830cf5ad480CAS |
(b) S. E. de Laszlo, S. V. Ley, R. A. Porter, J. Chem. Soc. Chem. Commun. 1986, 344.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Brettle, S. M. Shibib, J. Chem. Soc., Perkin Trans. 1 1981, 2912.
| Crossref | GoogleScholarGoogle Scholar |
[25]