An Enantiomerically Pure Pyridine NC-Palladacycle Derived from [2.2]Paracyclophane
Jean E. Glover A , Paul G. Plieger A and Gareth J. Rowlands A B
+ Author Affiliations
- Author Affiliations
A Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
B Corresponding author. Email: g.j.rowlands@massey.ac.nz
Australian Journal of Chemistry 67(3) 374-380 https://doi.org/10.1071/CH13440
Submitted: 23 August 2013 Accepted: 21 October 2013 Published: 19 November 2013
Abstract
An enantiomerically pure planar chiral pyridine-based palladacycle was prepared from [2.2]paracyclophane in just four steps. The palladacycle shows potential in catalysis, mediating the Suzuki coupling of an aryl chloride. It also permits the ortho bromination of [2.2]paracyclophane, a reaction that can be hard to achieve selectively.
References
[1] A. A. Aly, A. B. Brown, Tetrahedron 2009, 65, 8055.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOntbbO&md5=59e44aca2f2afe6fad65b35f5093a824CAS |
[2] R. Gleiter, H. Hopf (Eds) Modern Cyclophane Chemistry 2004 (Wiley-VCH: Weinheim).
[3] Y. Morisaki, R. Hifumi, L. Lin, K. Inoshita, Y. Chujo, Polym. Chem. 2012, 3, 2727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yksrnE&md5=2f5c2e98e608a9929602dfdbb22901dcCAS |
[4] B. Ortner, R. Waibel, P. Gmeiner, Angew. Chem. Int. Ed. 2001, 113, 1323.
| Crossref | GoogleScholarGoogle Scholar |
[5] G. J. Rowlands, Isr. J. Chem. 2012, 52, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFahsLs%3D&md5=8918f819ce2a1426946bd164c17c5a67CAS |
[6] V. Rozenberg, E. Sergeeva, H. Hopf, in Modern Cyclophane Chemistry (Eds R. Gleiter, H. Hopf) 2004, Ch. 17, pp. 435–462 (Wiley-VCH: Weinheim).
[7] O. R. P. David, Tetrahedron 2012, 68, 8977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjtbvN&md5=f31dd427814b3890f66ea4db1c37c3f8CAS |
[8] J. Paradies, Synthesis 2011, 3749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGnsA%3D%3D&md5=62a2ffa8f42ffd7eecc1077f19cf66c2CAS |
[9] G. J. Rowlands, Org. Biomol. Chem. 2008, 6, 1527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFCqsbk%3D&md5=095515dc120a84a303124c716cce6cd7CAS | 18421381PubMed |
[10] S. E. Gibson, J. D. Knight, Org. Biomol. Chem. 2003, 1, 1256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Krsrs%3D&md5=d98015d8bc0f46295f5cd2e765256997CAS | 12929653PubMed |
[11] C. Bolm, K. Wenz, G. Raabe, J. Organomet. Chem. 2002, 662, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1amtL0%3D&md5=3b3ccddc08b60912da7d2040141b0a90CAS |
[12] X.-L. Hou, X.-W. Wu, L.-X. Dai, B.-X. Cao, J. Sun, Chem. Commun. 2000, 1195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVelu7o%3D&md5=0da7083f8fb2fcf5aa77917fada3c44dCAS |
[13] P. B. Hitchcock, G. J. Rowlands, R. Parmar, Chem. Commun. 2005, 4219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsl2ns7s%3D&md5=541b06673bc4fa701c70eb95d6763b5bCAS |
[14] P. B. Hitchcock, G. J. Rowlands, R. J. Seacome, Org. Biomol. Chem. 2005, 3, 3873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ehtb7O&md5=543f81468117b124493cfe7740f8b3abCAS | 16240000PubMed |
[15] R. Parmar, M. P. Coles, P. B. Hitchcock, G. J. Rowlands, Synthesis 2010, 4177.
| 1:CAS:528:DC%2BC3MXisFOktbs%3D&md5=dd96fc24cec56a1369a156f4504f2f70CAS |
[16] L.-C. Campeau, K. Fagnou, Chem. Commun. 2006, 1253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xitlegurs%3D&md5=5e41c00ae126e935a8f6203fc7d9e6b9CAS |
[17] L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gmsr3F&md5=99132120c14546181d5767d0d407dd3dCAS | 16366550PubMed |
[18] L.-C. Campeau, D. R. Stuart, K. Fagnou, Aldrichim. Acta 2007, 40, 35.
| 1:CAS:528:DC%2BD2sXlsVyksbk%3D&md5=d1460a3d30711afcdfed9e2e0730ff4bCAS |
[19] J. R. Fulton, J. E. Glover, L. Kamara, G. J. Rowlands, Chem. Commun. 2011, 47, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFeqtLnE&md5=d5a1043d76aa11af2d44084d7c7b0cfcCAS |
[20] I. P. Beletskaya, A. V. Cheprakov, J.Organomet. Chem. 2004, 689, 4055.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgt7jJ&md5=df1be2733d1eca5f1ea303f089944ff5CAS |
[21] J. Dupont, C. S. Consorti, J. Spencer, Chem. Rev. 2005, 105, 2527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVWjsbY%3D&md5=ff508c6fd28e85e1ef823a5743bccd45CAS | 15941221PubMed |
[22] T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslWksQ%3D%3D&md5=47879ebcb01beb5dd44b4b3554c0e8a7CAS | 20078038PubMed |
[23] V. A. Stepanova, V. V. Dunina, I. P. Smoliakova, Organometallics 2009, 28, 6546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12hsrnK&md5=52d22782611b63ed8f08064ebc21c6f9CAS |
[24] C. E. Anderson, L. E. Overman, J. Am. Chem. Soc. 2003, 125, 12412.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlyku78%3D&md5=a03737b3e43f4df627ee273be6cb7f85CAS | 14531676PubMed |
[25] C. Xu, G. Jun Hao Kennard, F. Hennersdorf, Y. Li, S. A. Pullarkat, P.-H. Leung, Organometallics 2012, 31, 3022.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFelurc%3D&md5=0bd14920c61b2a4c02d58cd57e8b65eeCAS |
[26] O. N. Gorunova, M. V. Livantsov, Y. K. Grishin, M. M. Ilyin, K. A. Kochetkov, A. V. Churakov, L. G. Kuz’mina, V. N. Khrustalev, V. V. Dunina, J. Organomet. Chem. 2013, 737, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFGksrw%3D&md5=40f92aa526e0c3ce90aaeb93894e0e13CAS |
[27] J. E. Glover, D. J. Martin, P. G. Plieger, G. J. Rowlands, Eur. J. Org. Chem. 2013, 1671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFOltw%3D%3D&md5=3d5f74b3ddfcce608d5a2384c0b009b7CAS |
[28] R. J. Seacome, M. P. Coles, J. E. Glover, P. B. Hitchcock, G. J. Rowlands, Dalton Trans. 2010, 39, 3687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKgtL8%3D&md5=2a87f1f5fd1fb127a1b028335f876c91CAS | 20364463PubMed |
[29] V. V. Dunina, E. I. Turubanova, M. V. Livantsov, K. A. Lyssenko, Y. K. Grishin, Tetrahedron Asymm. 2008, 19, 1519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVenu7Y%3D&md5=ee6d9709afe47ffb44edad0f018288b0CAS |
[30] V. V. Dunina, E. I. Turubanova, M. V. Livantsov, K. A. Lyssenko, N. V. Vorontsova, D. Y. Antonov, Y. K. Grishin, Tetrahedron Asymm. 2009, 20, 1661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Churk%3D&md5=06f279f7e157dd4d033786bc1865e00aCAS |
[31] N. Dendele, F. Bisaro, A.-C. Gaumont, S. Perrio, C. J. Richards, Chem. Commun. 2012, 48, 1991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFyksw%3D%3D&md5=0010a06a3c23be0c1b12cb8096c37f16CAS |
[32] P. Lennartz, G. Raabe, C. Bolm, Adv. Synth. Catal. 2012, 354, 3237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GktrjP&md5=b51eef163ee1c3544971d8084b6839e5CAS |
[33] Previous synthesis of a pyridinyl[2.2]paracyclophane: H. Hopf, A. A. Aly, V. N. Swaminathan, L. Ernst, I. Dix, P. G. Jones, Eur. J. Org. Chem. 2005, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlyksg%3D%3D&md5=08b78ffc2247354ff7ed0bfb4d484a08CAS |
[34] See Supplementary Material.
[35] S. B. Atla, A. A. Kelkar, V. G. Puranik, W. Bensch, R. V. Chaudhari, J. Organomet. Chem. 2009, 694, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFyksL4%3D&md5=b76874d7c9918550a374129c66709f9cCAS |
[36] CCDC-956997 contains the supplementary crystallographic data for compound 6. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[37] CCDC-956996 contains the supplementary crystallographic data for compound (pS,S)-7. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[38] J. Clayden, S. P. Fletcher, J. J. W. McDouall, S. J. M. Rowbottom, J. Am. Chem. Soc. 2009, 131, 5331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKltrY%3D&md5=0da22da434a175fb4a5379ab1e53ca72CAS | 19309078PubMed |
[39] R. J. Kloetzing, P. Knochel, Tetrahedron Asymm. 2006, 17, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFKgug%3D%3D&md5=b76a366a8c4ce7a14b330b36ef8a8734CAS |
[40] M. McCarthy, P. J. Guiry, Tetrahedron 2001, 57, 3809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1WhtbY%3D&md5=32f45dc0f13ca4936879883bcf466d92CAS |
[41] D. J. Cram, A. C. Day, J. Org. Chem. 1966, 31, 1227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XptlSrug%3D%3D&md5=3d93e0a75a1e946d9c618d55e936a176CAS |
[42] P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 2005, 7, 2085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslKqt7k%3D&md5=b8b803aab8df12231586f221166ce89dCAS | 15901140PubMed |
[43] CrystalClear Version 1.4.0 2005 (Rigaku Americas Corporation: The Woodlands, TX).
[44] PROCESS-AUTO 1998 (Rigaku Corporation: Tokyo).
[45] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.