Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Raman Spectroscopic Imaging of Cholesterol and Docosahexaenoic Acid Distribution in the Retinal Rod Outer Segment

Zachary D. Schultz
+ Author Affiliations
- Author Affiliations

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46566, USA. Email: Schultz.41@nd.edu

Australian Journal of Chemistry 64(5) 611-616 https://doi.org/10.1071/CH11019
Submitted: 10 January 2011  Accepted: 23 March 2011   Published: 30 May 2011

Abstract

Raman vibrational spectroscopic imaging was performed on retinal rod cells isolated from bullfrogs (Rana catesbeiana). The Raman spectra enable determination of the lipid and protein rich rod outer segment (ROS) from the nucleus and inner segment of the cell. Peak fitting analysis of spectra obtained from individual rod photoreceptor cells show characteristic vibrational modes that can be associated with cholesterol and docosahexaenoic acid-containing lipids. These results provide direct observations of biomolecular gradients in the rod photoreceptor cells, which, thus far, have been based on indirect detergent extracts and histochemical analysis with indicators such as filipin. The detected biomolecules are associated with regulation of the integral membrane protein rhodopsin, and methods capable of direct observation of these biomolecules offer new routes to exploring their role in the regulation of cellular processes.


References

[1]  M. O. Jensen, O. G. Mouritsen, Biochim. Biophys. Acta-Biomembr. 2004, 1666, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFOktLc%3D&md5=b189c906636107d0929375c008eb00fbCAS |

[2]  W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys. J. 2000, 79, 328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1Kksrs%3D&md5=712fe7f457757a558816e44ffd806b52CAS | 10866959PubMed |

[3]  W. Rawicz, B. A. Smith, T. J. McIntosh, S. A. Simon, E. Evans, Biophys. J. 2008, 94, 4725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFKgt74%3D&md5=a593d007e0c94cfc0b9c98710c1c6a08CAS | 18339739PubMed |

[4]  J. R. Henriksen, J. H. Ipsen, Eur. Phys. J. E. 2004, 14, 149.
         | 1:CAS:528:DC%2BD2cXmvFKrsLs%3D&md5=e1faf8595ccdf0b3bcf41d09be61db81CAS |

[5]  T. V. Chalikian, K. J. Breslauer, Proc. Natl. Acad. Sci. USA 1996, 93, 1012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xptl2nsA%3D%3D&md5=ce703089baef369c48362b93c62e9df6CAS |

[6]  T. Hianik, M. Haburcak, K. Lohner, E. Prenner, F. Paltauf, A. Hermetter, Colloids Surfaces A-Physicochem. Engineer. Aspects 1998, 139, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlOmurs%3D&md5=c2759fa8993fcfe833b766d59b8c0055CAS |

[7]  J. F. Nagle, S. Tristram-Nagle, Rev. Biomembr. 2000, 1469, 159.
         | 1:CAS:528:DC%2BD3cXovFKns7c%3D&md5=a998b424ffb7ac30ff839aabcfbc6820CAS |

[8]  Z. D. Schultz, I. W. Levin, Biophys. J. 2008, 94, 3104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Chtbc%3D&md5=c8a22e4bdceab16dfb899e9971947d99CAS | 18192352PubMed |

[9]  N. Taulier, I. V. Beletskaya, T. V. Chalikian, Biopolymers 2005, 79, 218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtbvJ&md5=1cf5b764154ccee0be8bae24c91d1624CAS | 16100718PubMed |

[10]  B. A. Cornell, F. Separovic, Biomembranes 1983, 733, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltlGrtLw%3D&md5=d658cbf55cfa8f72b6a354f85370ee9bCAS |

[11]  U. Seifert, Adv. Phys. 1997, 46, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht12nsLc%3D&md5=a95a6f89e97dd56985e3cab8003ed15eCAS |

[12]  N. Kučerka, S. Tristram-Nagle, J. F. Nagle, J. Membr. Biol. 2006, 208, 193.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  O. Soubias, W. E. Teague, K. G. Hines, D. C. Mitchell, K. Gawrisch, Biophys. J. 2010, 99, 817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFWnu7w%3D&md5=0ca89ee53e6328853fbb3a56be32e463CAS | 20682259PubMed |

[14]  R. W. Hendler, S. M. Barnett, S. Dracheva, S. Bose, I. W. Levin, Eur. J. Biochem. 2003, 270, 1920.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslGms7o%3D&md5=6cd3b44cba6957c798a1f15a5d14bb95CAS | 12709050PubMed |

[15]  J. J. Ruprecht, T. Mielke, R. Vogel, C. Villa, G. F. X. Schertler, EMBO J. 2004, 23, 3609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFajsb8%3D&md5=2c0930807ec340b98ae0072415a53575CAS | 15329674PubMed |

[16]  E. Politowska, R. Kazmierkiewicz, V. Wiegand, F. Fahrenholz, J. Ciarkowski, Acta Biochim. Pol. 2001, 48, 83.
         | 1:CAS:528:DC%2BD3MXjs1Smu7c%3D&md5=e4b67d4c5603c69f289389a5e0a880e8CAS | 11440186PubMed |

[17]  A. D. Albert, J. E. Young, P. L. Yeagle, Biochim. Biophys. Acta-Biomembr. 1996, 1285, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn 2002 (Garland Science: New York, NY).

[19]  D. C. Mitchell, M. Straume, B. J. Litman, Biochemistry 1992, 31, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVShtQ%3D%3D&md5=896fc208dd57e495402c0584553b5962CAS | 1731921PubMed |

[20]  S. L. Niu, D. C. Mitchell, B. J. Litman, J. Biol. Chem. 2001, 276, 42807.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlelsrw%3D&md5=b381ca2cef4bed6dfa42d3545d17a04fCAS | 11544259PubMed |

[21]  D. C. Mitchell, S. L. Niu, B. J. Litman, J. Biol. Chem. 2001, 276, 42801.
         | 1:CAS:528:DC%2BD3MXptlelsr8%3D&md5=6a400671888110a6ca8026d3f5050fe4CAS | 11544258PubMed |

[22]  A. D. Albert, K. Boesze-Battaglia, Prog. Lipid Res. 2005, 44, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cksrw%3D&md5=e0ab77a7c4cbb775f81a49f453406a2cCAS | 15924998PubMed |

[23]  A. D. Albert, J. E. Young, Z. Paw, Biomembranes 1998, 1368, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVOrtrk%3D&md5=2009a9d48234450eaba6607841ffb737CAS |

[24]  K. Boesze-Battaglia, M. Damek-Poprawa, D. C. Mitchell, L. Greeley, R. S. Brush, R. E. Anderson, M. J. Richards, S. J. Fliesler, J. Lipid Res. 2008, 49, 1488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVOqu78%3D&md5=d07f9cf84e3c7d7e7574be512425516fCAS | 18344409PubMed |

[25]  S. L. Veatch, S. L. Keller, Biophys. J. 2003, 85, 3074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFWrurc%3D&md5=a492745eba4854883207cfef3f424f37CAS | 14581208PubMed |

[26]  X. L. Xu, E. London, Biochemistry 2000, 39, 843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wjsw%3D%3D&md5=57f92aabb5a57370a6b7ece42ef14be8CAS | 10653627PubMed |

[27]  A. Radhakrishnan, T. G. Anderson, H. M. McConnell, Proc. Natl. Acad. Sci. USA 2000, 97, 12422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFOqu70%3D&md5=3e0a7a11952d9a20a7b0c0a2a7ac9b0cCAS |

[28]  D. Marsh, Biomembranes 2010, 1798, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlWgt7c%3D&md5=5d65f3879ec28408946555b82206f3a7CAS |

[29]  D. Marsh, Biomembranes 2009, 1788, 2114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aisL7F&md5=95b11f6799b806a313bd8e02737ef174CAS |

[30]  L. Miao, M. Nielsen, J. Thewalt, J. H. Ipsen, M. Bloom, M. J. Zuckermann, O. G. Mouritsen, Biophys. J. 2002, 82, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Kjt7c%3D&md5=1227aa3bc73d2b6edbeb32c512a2afa3CAS | 11867458PubMed |

[31]  M. P. Bennett, D. C. Mitchell, Biophys. J. 2008, 95, 1206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWhtLw%3D&md5=03d62a4e8e34dccb744fe5699f1dd26eCAS | 18424497PubMed |

[32]  R. E. Anderson, M. B. Maude, D. Bok, Invest. Ophthalmol. Vis. Sci. 2001, 42, 1715.
         | 1:STN:280:DC%2BD3MvhtVOhuw%3D%3D&md5=39332e93b8837ed6d1785c5b68275d19CAS | 11431433PubMed |

[33]  D. A. Brown, E. London, Annu. Rev. Cell Dev. Biol. 1998, 14, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFyju7w%3D&md5=5afb16ad80fbbd7c3275fdf455fff562CAS | 9891780PubMed |

[34]  Z. J. Cheng, R. D. Singh, D. L. Marks, R. E. Pagano, Mol. Membr. Biol. 2006, 23, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1CitLk%3D&md5=e8719707647226bfbb4af722b228041dCAS | 16611585PubMed |

[35]  M. L. Kraft, P. K. Weber, M. L. Longo, I. D. Hutcheon, S. G. Boxer, Science 2006, 313, 1948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSnsrnO&md5=36c78462ddffa4a9dfba7c272836e20dCAS | 17008528PubMed |

[36]  T. Kaasgaard, C. Leidy, J. H. Ipsen, O. G. Mouritsen, K. J¯rgensen, Single Molecules 2001, 2, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlCqtL4%3D&md5=703663b0b134b39e386942ea3faa7c0aCAS |

[37]  J. E. Shaw, R. F. Epand, R. M. Epand, Z. G. Li, R. Bittman, C. M. Yip, Biophys. J. 2006, 90, 2170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Cktbc%3D&md5=a93c1f69fabc5c8fe6425b46f0bd0866CAS | 16361347PubMed |

[38]  L. J. Johnston, Langmuir 2007, 23, 5886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVWmtrY%3D&md5=5509450a69196da90b7313578b804a1aCAS | 17428076PubMed |

[39]  H. M. Kim, H. J. Choo, S. Y. Jung, Y. G. Ko, W. H. Park, S. J. Jeon, C. H. Kim, T. Joo, B. R. Cho, ChemBioChem 2007, 8, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVeiu7c%3D&md5=8fd07a9c624336a47fd5da488017d9f0CAS | 17300111PubMed |

[40]  Y. Chen, J. Qin, J. Y. Cai, Z. W. Chen, PLoS ONE 2009, 4, e5386.
         | Crossref | GoogleScholarGoogle Scholar | 19404395PubMed |

[41]  M. Hundt, Y. Harada, L. De Giorgio, N. Tanimura, W. G. Zhang, A. Altman, J. Immunol. 2009, 183, 1685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCku7o%3D&md5=7ab06f2f34d9f57061cca466a0f6b2c3CAS | 19592663PubMed |

[42]  B. Krueger, S. Haerteis, L. M. Yang, A. Hartner, R. Rauh, C. Korbmacher, A. Diakov, Cell. Physiol. Biochem. 2009, 24, 605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSktrrL&md5=05a90fa4543e00356b1153559cda2d8dCAS | 19910701PubMed |

[43]  R. Mendelsohn, D. J. Moore, Chem. Phys. Lipids 1998, 96, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVyhtrw%3D&md5=d747edce80ef48ee139807f23ad28105CAS | 9871985PubMed |

[44]  A. Percot, M. Lafleur, Biophys. J. 2001, 81, 2144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlSnsb8%3D&md5=8425e2a4c88d8e44da5eac39b5701289CAS | 11566785PubMed |

[45]  M. Jackson, D. J. Moore, H. H. Mantsch, R. Mendelsohn, Vibrational Spectroscopy of Membranes, in Handbook of Vibrational Spectroscopy 2002, pp. 3508–3518 (Eds J. M. Chalmers, P. R. Griffiths) (John Wiley & Sons Ltd: Chichester).

[46]  R. Mendelsohn, C. R. Flach, D. J. Moore, Biochim. Biophys. Acta-Biomembr. 2006, 1758, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlKntbk%3D&md5=51ed43a01ae2ba03e66438a3ecc5375fCAS |

[47]  M. Arseneault, M. Lafleur, Biophys. J. 2007, 92, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmsrzP&md5=861e52e715ed4eb622131dd90890d06eCAS | 17028138PubMed |

[48]  G. J. Zhang, D. J. Moore, C. R. Flach, R. Mendelsohn, Anal. Bioanal. Chem. 2007, 387, 1591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFShtr4%3D&md5=468be8e088a7a442e9da4dab0303e728CAS | 17160382PubMed |

[49]  S. Kwak, M. Lafleur, Chem. Phys. Lipids 2009, 161, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgu7vO&md5=1f21f4c4b48f812c83c55667b92832cfCAS | 19559016PubMed |

[50]  C. Matthäus, S. Boydston-White, M. Miljkovic, M. Romeo, M. Diem, Appl. Spectrosc. 2006, 60, 1.
         | Crossref | GoogleScholarGoogle Scholar | 16454901PubMed |

[51]  M. M. Mariani, L. J. Maccoux, C. Matthaus, M. Diem, J. G. Hengstler, V. Deckert, Anal. Chem. 2010, 82, 4259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFequ7g%3D&md5=6813095567a678224c417c4e67db3a4eCAS | 20380478PubMed |

[52]  C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, Science 2008, 322, 1857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmtrbP&md5=c5af7b13e4e8eb879818182ec73689d1CAS | 19095943PubMed |

[53]  C. L. Evans, X. S. Xie, Ann. Rev. Analytical Chem. 2008, 1, 883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygsL3K&md5=13ce9e93d69bc98fa3e76609efed6491CAS |

[54]  R. N. A. H. Lewis, R. N. McElhaney, Vibrational Spectroscopy of Lipids, in Handbook of Vibrational Spectroscopy: Applications in Life, Pharmaceutical and Natural Sciences 2002, pp. 3447–3464 (Eds J. M. Chalmers, P. R. Griffiths) (John Wiley & Sons Ltd: Chichester).

[55]  X. H. Wen, L. X. Shen, R. S. Brush, N. Michaud, M. R. Al-Ubaidi, V. V. Gurevich, H. E. Hamm, J. Lem, E. Di Benedetto, R. E. Anderson, C. L. Makino, Biophys. J. 2009, 96, 939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslGiur0%3D&md5=258666597f6ec6651ffd13d208e95bb8CAS | 19186132PubMed |

[56]  P. D. Calvert, V. I. Govardovskii, N. Krasnoperova, R. E. Anderson, J. Lem, C. L. Makino, Nature 2001, 411, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFGmtbc%3D&md5=083b3846a9d64a6b60766d055f4c73a8CAS | 11333983PubMed |

[57]  K. Boeszebattaglia, A. D. Albert, Exp. Eye Res. 1989, 49, 699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFagurc%3D&md5=d2d997c3d9b1b67753be77e92acc2857CAS | 2806432PubMed |

[58]  M. F. Brown, Chem. Phys. Lipids 1994, 73, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlWrtbw%3D&md5=5db35e924295fa652c561453eabe4dccCAS | 8001180PubMed |

[59]  D. A. Baylor, T. D. Lamb, K. W. Yau, J. Physiol. 1979, 288, 589.
         | 1:STN:280:DyaE1M3ktFGksA%3D%3D&md5=b1159f7a252f9c432dd8c5bff9a0a4a9CAS | 112242PubMed |